
Overhyped? Can ML Models Reliably
Predict Stock Returns?∗

S. Yanki Kalfa1, Allan Timmermann1, and Terri van der Zwan2,3

1University of California San Diego, Rady School of Management
2Erasmus School of Economics, Erasmus University Rotterdam

3Tinbergen Institute

October 4, 2024

Abstract

Hyperparameters determine the architecture of machine learning (ML) models and
can greatly affect their forecasting performance, yet there is little consensus on how to
choose the range and grid of hyperparameters to search over. We provide an extensive
examination of which hyperparameters are most important for popular ML models’
out-of-sample forecasting performance using a large U.S. dataset on individual stock
returns and firm characteristics. We find that some choices of hyperparameters virtu-
ally guarantee good out-of-sample return forecasts while others lock in poor forecasts.
This poses a challenge because many empirical studies fail to provide details on how
they set their hyperparameters. We also find that time-series validation methods do
not offer a definitive solution to the dependence of out-of-sample return forecasting
performance on the underlying range of hyperparameters.

∗Corresponding email: skalfa@ucsd.edu, atimmermann@ucsd.edu, t.vanderzwan@ese.eur.nl. This
paper has greatly benefited from comments from seminar and conference participants at CIREQ-CMP (Uni-
versity of Montreal), Birkbeck College (University of London), USC, and Robeco Asset Management.

mailto:skalfa@ucsd.edu
mailto:atimmermann@ucsd.edu
mailto:t.vanderzwan@ese.eur.nl

1 Introduction

Machine learning (ML) methods are now widely used in empirical asset pricing, with many

studies finding that these methods can produce more accurate forecasts of stock and bond

returns and improve portfolio performance compared to traditional time-series approaches.1

While early empirical results have been promising, evaluating forecasts generated by ML

methods poses new challenges related to the additional levers and flexibility these methods

introduce. In particular, the forecasting performance of ML methods such as random forests,

boosted regression trees and neural nets depends on a potentially large set of hyperparame-

ters that determine their ability to capture complex interaction effects and non-linearities. In

contrast, conventional (linear) return prediction models focus on which predictors to include.

This boils down to determining how to set a penalty term for inclusion of individual variables

or groups of predictors from a candidate list and how much to shrink their coefficients. Both

choices involve relatively simple and well-understood decisions.

The myriad of hyperparameters that users of ML methods must decide on can be illus-

trated by Feed-Forward Neural Networks (NNs). First, a researcher needs to decide on the

number of hidden layers to use as well as their shape. Next, the researcher needs to select

an activation function for the hidden units within the hidden layers, typically either linear

or rectified linear unit. Because NNs update the input weights recursively (in epochs) the

researcher needs to select a loss function (e.g., MSE, Huber) for each hidden unit. Moreover,

because the loss function is not concave, the researcher needs to select an optimization al-

gorithm, e.g., gradient descent or Adaptive Moment Estimation, and an associated learning

rate. Lastly, decisions have to be made on batch normalization, dropout rate, whether to

use early stopping, and regularization in the kernel of hidden units.2

Given these many choices, in practice how do researchers go about setting the range of

values considered for the hyperparameters of ML models? Table 1 summarizes the choices

reported in recent studies that use ML methods. Random Forests (RF), Gradient Boosted
1Prominent studies that use ML methods to predict stock returns include Gu et al. (2020), Gu et al.

(2021), Jiang et al. (2023), and Han et al. (2023). Kelly et al. (2023) provide a comprehensive recent review
of the literature.

2This list of hyperparameters and architectural choices is not comprehensive but represents some of the
main desiderata researchers must consider when training neural networks.

1

Trees (GBT), and Neural Networks (NN) are the most popular algorithms. The table il-

lustrates that there is no broad consensus on the hyperparameter used by these algorithms.

Indeed, because these parameters typically have no economic interpretation, there is gen-

erally no universal way to determine which ranges to search over.3 Some hyperparameters

are simply set ex ante, appealing to prior studies or “convention”, while others are chosen

through validation methods. Both strategies require an understanding of how the hyperpa-

rameters influence forecasting performance and how they possibly interact.

Computational constraints typically make it infeasible to consider all possible combina-

tions of hyperparameters. In practice, researchers can therefore only conduct their search

within a subset of the high-dimensional space of hyperparameters and are forced to make

judgment calls on the range and grid of hyperparameters to focus on.

Despite their central role for ML models, how the range and grid of hyperparameters

affects the performance of return predictability models has largely gone unexamined with

some studies effectively providing examples of particular combinations of hyperparameters

that seem to produce good forecasting results. In this paper we fill this void by undertaking

a comprehensive study of how sensitive the performance of return forecasts generated by

different ML models is with respect to their choice of hyperparameters, the implications of

this sensitivity with regards to inference about (out-of-sample) forecasting performance, and

possible solutions in the form of validation schemes.4

Our empirical analysis uses the updated characteristics dataset of Gu et al. (2020) which

we merge with stock return data obtained from the Center for Research in Security Prices

(CRSP). As the data contains many missing characteristics, we use the local backward B-XS

model of Bryzgalova et al. (2024) to impute missing characteristics based on historical data

and contemporaneous cross-sectional asset information without introducing any look-ahead

biases through information leakage. Our monthly data runs from January 1977 through

December 2021, spanning almost 7,000 unique firms and 140 features.

To examine the sensitivity of the out-of-sample forecasting performance to different hy-
3For example, the learning rate of the Adam optimization algorithm is difficult to choose based on

economic intuition or insights.
4This is also related to the literature on nonstandard errors (see, e.g., Menkveld et al., 2024), which

examines how research design choices, such as the selection and transformation of explanatory and target
variables, influence results. We leave this aspect for future research.

2

perparameters and identify the most critical ones, our analysis proceeds by fixing one di-

mension of the hyperparameter space (i.e., one hyperparameter) while letting the remaining

dimensions vary freely. For penalized linear models such as the Lasso and Elastic Net, pre-

dictive accuracy depends mostly on the shrinkage parameter that determines the cutoff for

a predictor to be included in the model. For Random Forests, the depth of the trees and

number of features are the most important hyperparameters while for Extreme Gradient

Boosted Trees (XGBoost) the depth of the trees and the learning rate are key determinants

of out-of-sample forecasting performance.5 Lastly, the out-of-sample predictive performance

of NNs depends critically on the learning rate, followed by kernel l1 shrinkage. Though they

still matter, the choice of the number of hidden layers, loss function, and activation function

appear to be relatively less consequential.

Building on these insights, we next show that the range of values for the key hyperpa-

rameters can matter greatly to out-of-sample predictive performance. For example, a very

low shrinkage parameter for the Lasso or Elastic Net results in too many predictors being in-

cluded with return forecasts that are dominated by noise and perform poorly out-of-sample.

For XGBoost, a low depth of the trees combined with a low learning rate tends to produce

overly conservative models, resulting in underfitting, while high depth paired with a high

learning rate leads to overfitting and instability in the learning process. Similarly, a high

learning rate for extreme gradient boosted trees or NNs results in a set of models whose

out-of-sample predictive accuracy is far lower on average with a far higher chance of serious

underperformance than models using a lower learning rate.

Several important insights emerge from this analysis. Across all ML methods, our results

show that it is possible to fix a subset (“corner”) of the space of hyperparameters such

that good out-of-sample forecasting performance is achieved regardless of how the remaining

hyperparameters are chosen. However, the opposite also holds: the space of hyperparameters

can be restricted so that poor forecasting performance is, if not guaranteed, highly likely

regardless of whether other hyperparameters are chosen optimally. This situation typically

occurs as a result of using flexible models and a high learning rate.

We also show that the spread in out-of-sample predictive performance can be much wider
5Conversely, choices such as the number of trees matters less.

3

for some ML approaches such as neural nets compared to that of traditional linear models.

This increases the risk that the out-of-sample forecasting performance of these methods

is overstated (“hyped”) since it is often possible to select a combination of values for the

hyperparameters such that forecasts appear to be accurate even out-of-sample.6

Importantly, however, the much wider distribution in out-of-sample forecasting perfor-

mance of ML models compared to traditional linear forecasting models is not symmetric but

heavily left-skewed. In other words, across a wide set of configurations of hyperparameters

there is, in practice, an upper bound on the maximum out-of-sample accuracy achievable by

ML return forecasts. Conversely, the forecasting performance of the worst ML models, with

hyperparameters set to make forecasts overly sensitive to noise, can become arbitrarily poor.

These conclusions on the average forecasting performance of ML models carry over to

differences in cross-sectional measures of return predictability. Specifically, We find that

the cross-sectional spread in forecasting accuracy across individual stocks is much wider for

flexible ML models than for penalized linear models. Moreover, ML forecasting methods

tend to perform relatively poorly for large cap stocks and stocks with high trading volume,

raising concerns about whether such forecasts can be implemented in a profitable investment

strategy net of transactions costs.

Having established these findings, we finally examine whether validation methods provide

a convincing solution for choosing the hyperparameters. In many empirical applications,

researchers split the data into training, validation, and test samples with the validation set

used to select the hyperparameters. This procedure involves another set of choices such as

validation method, the length of the validation sample, the range and grid of hyperparameters

under consideration, the method being used to search over the space of hyperparameters,

and whether or not to implement early stopping.

We find that these choices can have an important impact on out-of-sample forecasting

performance. For instance, we demonstrate that the out-of-sample performance of XGBoost

and neural networks is highly dependent on the initially selected hyperparameter grid even
6This phenomenon is distinct from over-fitting which is concerned with flexible ML models’ ability to

provide an arbitrarily good (in-sample) fit on the training data. We show instead that the out-of-sample
predictive performance results have a far wider dispersion for ML methods than for conventional linear
forecasting regressions.

4

when employing an efficient grid search algorithm that dynamically adjusts the hyperpa-

rameter search space, increasing the likelihood of finding a (near-)optimal hyperparameter

configuration. In practice, validation is therefore no panacea to the issue of how to choose

hyperparameters.

While economic reasoning does not suggest a specific range of values over which to search

for the best hyperparameters of a given ML approach, an understanding of how the architec-

ture of different ML methods, as determined by their hyperparameters, affects forecasting

performance can be used to determine strategies for choosing reasonable ranges for regulating

the bias-variance trade-off that is essential to out-of-sample forecasting performance.

The remainder of the paper proceeds as follows. Section 2 describes the ML methods we

consider, emphasizing the hyperparameters each method uses. Section 3 introduces the main

features of our data along with the estimation and forecasting procedure. Section 4 provides

a detailed analysis of the ML models’ out-of-sample forecasting performance for different

regions of the space of hyperparameters. Section 5 examines the forecasting performance

under different validation schemes used to select the hyperparameters. Finally, Section 6

concludes.

5

Table 1: Hyperparameter grids used by previous studies

Lasso Enet RF GBT NN CV
Gu et al. (2020) – α ∈ [0.0001, 0.1] Trees=300 Trees ∈ {1, ..., 1000} Layers ∈ {1, ..., 5} TS Validation

λ = 0.5 Max. Depth ∈ {1, ..., 6} Max. Depth ∈ {1, 2} Nodes=[32,16,8,2,1] 10 years
Features=3,5,10,20,... η ∈ {0.01, 0.1} Adam η ∈ {0.001, 0.01}

l1 ∈ (10−5, 10−3)
Batch size=10000

Epochs=100
Patience=5

Ensemble=10
Wolff and Neugebauer (2019) NA NA NA – – 5-Fold
Masini et al. (2023) NA NA NA NA Layers=1,3,5 NA

Nodes=NA
Dropout=NA

Van Binsbergen et al. (2023) – – Trees=2000 – – NA
Max. Depth=7

Feature Fraction=0.01
Min. Node=5

Coulombe et al. (2023) – – – Trees=100 – TS Validation
Max. Depth=NA 3 years

Feature Fraction=NA Optuna
l1/l2=NA “Wide grid”

Subsample Ratio=NA
Bianchi et al. (2021) – – – – Layers=1,2 TS Validation

Nodes=[1, 3] 5 years
Dropout={0.1, 0.3, 0.5}

l1, l2 ∈ {0.0001, 0.001, 0.01}
Chen et al. (2024) – NA – – Layers=3 TS Validation

Nodes=[32, 16, 8] 5 years
Adam η=0.001
Dropout=0.05

Avramov et al. (2023) – – – – Layers=3 3-Fold
Nodes=[32,16,8] 12 years

l1=NA
Adam η=NA

Batch-normalization
Coulombe et al. (2022) – – – Max. Depth=10 Layers=1,2 POOS and

Feature Fraction=1 Nodes=[32,16] 5-Fold
Adam η = 0.01

Patience=5
Bali et al. (2023) α ∈ [10−6, 10−2] α ∈ [10−6, 10−2] Trees=1024 Trees=1024 Layers ∈ {1, ..., 5} TS Validation

λ ∈ [0, 1] Max. Depth ∈ {2, 10} Max. Depth ∈ {2, 10} Batch size ∈ {212, 214, 216} 2 years
Max. Leaves ∈ [2, 10] Max. Leaves ∈ [2, 10] η ∈ {0.001, 0.01, 0.1} Enhanced

Feature Fraction ∈ [0.25, 1] Feature Fraction ∈ [0.25, 1] Dropout ∈ [0, 0.5] Hyperband
η ∈ {0.01, 0.1, 1} Epochs=64

l1, l2 ∈ [0, 0.1]
Cao et al. (2024) – – Trees=100 Trees=100 Layers=5 NA

Max. Depth=3 Max. Depth=3 Batch size=1000
η = 0.05 η = 0.05

Subsample Ratio=0.4 Epochs=50
Shen and Xiu (2024)∗ α ∈ [10−3.4, 10−2.4] – Trees=500 Trees ∈ {1, ..., 10} Layers=1, Nodes=32 2-Fold

Max. Depth ∈ {1, ..., 6} Max. Depth ∈ {1, ..., 5} Batch size=10000
Features ∈ {3, 5, 10, 15, 20} η ∈ {0.0001, 0.001, (η, epochs) ∈

0.01, 0.02, 0.05} {(0.5, 2), (0.1, 10), (0.067, 15),
(0.05, 20), (0.04, 25)}

l1 ∈ [10−5, 10−3], l2 ∈ [0.0001, 1]

Note: RF refers to random forest, GBT to gradient boosted trees, NN to neural networks, and CV to cross-validation. “NA” indicates use of the algorithm but no mention of the
hyperparameter grid. “–” indicates no use of the algorithm. For the linear models, α corresponds to the l1 regularization penalty, and λ to the (l1, l2) penalty mixer. Further, l1
and l2 refer to regularization terms, η denotes the learning rate associated with the algorithm used. For cross-validation, TS refers to time-series cross-validation, POOS refers to
pseudo-out-of-sample. ∗ The authors consider multiple datasets with various hyperparameter settings. Here, we present the hyperparameters used in their analysis of the cross-section
of expected returns.

6

2 Methodology

This section sets out the forecast modeling problem that is the focus of our analysis and

introduces the different classes of ML models considered in the paper.

2.1 The Modeling Problem

Let ri,t denote the return of stock i at time t, measured in excess of the risk-free rate, where

i = 1, . . . , Nt and t = 1, . . . , T . We add a t subscript to N to note the unbalanced structure

of the panel. However, to simplify notation, we refer to the number of stocks in each period

as N in the remainder.

We can decompose excess returns into its conditional expectation given the information

set available at time t− 1, It−1, and an orthogonal residual, εi,t:

ri,t = E[ri,t | It−1] + εi,t. (1)

Our objective is to model the expectation of ri,t conditional on a set of K predictor variables

Xi,t−1 ∈ It−1:

E[ri,t | It−1] = g(Xi,t−1; θ), (2)

where g(·) is a flexible function of Xi,t−1 parameterized through θ. As in Gu et al. (2020),

the functional form of g(·) is assumed to be the same across stocks and over time.

2.2 Hyperparameters

Machine learning methods involve two sets of parameters. Hyperparameters (θH) control the

complexity of the models and are determined a priori by the researcher before estimating

the full model. Given a set of hyperparameters, the model parameters (θM) are estimated

with the objective of minimizing a given loss function. This second step is conceptually

(though not necessarily computationally) simple. Identifying suitable hyperparameters is of-

ten complex and varies with the particular optimization problem at hand. In equity premium

prediction, there is little theoretical guidance on how to choose a good set of hyperparame-

ters. It is therefore common either to use a pre-defined set of hyperparameters or to search

7

over a grid of a priori determined hyperparameters. The configuration of this grid—its gran-

ularity and range—is often overlooked due to the reliance on validation techniques, but is

the key focus of our analysis.

Why not choose hyperparameters by optimizing the objective function with regards to

these parameters just as with the regular model parameters? In many cases, this turns

out to be computationally infeasible. For example, with only five hyperparameters, each

evaluated on a grid of ten different values, nearly 10 million different models would need to

be examined. Researchers therefore tend to either use predetermined values appealing to

“common practice”, or use validation methods, an approach we return to in Section 5.

To evaluate the sensitivity of forecasting performance to the choice of hyperparameters,

we examine model performance on a large grid of hyperparameters. Specifically, to cap-

ture the marginal effect of a particular hyperparameter, θH1, we fix this at some value,

θH1 = θH1,fix and examine forecasting performance across the full grid of values taken by all

other hyperparameters θC
H1. In other words, our computational experiments optimize over

the model parameters in the training set but keep one dimension of the hyperparameter

space fixed. Specifically, for a given set of hyperparameters, we split the dataset into two

samples, the training sample and test sample. We use the training sample to estimate the

model parameters based on a training loss function, Lloss. The objective function, L(θ),

takes the following general form

L(θ) = Lloss(θ) + P(θ), (3)

where P(θ) is a penalty term. Following common practice (e.g., Gu et al., 2020), we deter-

mine the parameters of our models using the mean squared error (MSE) objective, l2, over

the training set corresponding to the loss function

Ll2(ri,t, θ) =
(
ri,t − g(Xi,t−1; θ)

)2
. (4)

The MSE loss function in (4) penalizes large errors quite, making it sensitive to outliers.

As a more robust training criterion we also consider the Huber loss function for the ensemble

models and neural networks:

8

Lδ(ri,t, θ; δ) =


(
ri,t − g(Xi,t−1; θ)

)2
, if |ri,t − g(Xi,t−1; θ)| ≤ δ

2δ
(
|ri,t − g(Xi,t−1; θ)| − δ2

)
, if |ri,t − g(Xi,t−1; θ)| > δ.

(5)

We set δ to the 99.9th percentile of the data following Gu et al. (2020). This loss function

tends to produce more stable forecasts.

2.3 Linear Models

For linear machine learning algorithms we focus on penalized regression models, namely, the

Lasso and Elastic Net. For these models, we have

g(Xi,t−1; β) = β′Xi,t−1, (6)

such that the conditional expectation is approximated by a linear function of the predictor

variables and parameter vector β. Penalized regression models minimize Equation (3), with

the conventional least squares objective function and a penalty term. The Lasso approach

includes an l1 penalization and the Elastic Net includes both l1 and l2 penalization terms:

P(β; α, λ) =

α
∑K

k=0 |βk|, Lasso,
αλ

∑K
k=0 |βk|+ α(1−λ)

2
∑K

k=0 β2
k , Elastic Net.

(7)

Here, α is the shrinkage hyperparameter on the coefficients and λ is the mixing hyperpa-

rameter determining how the l1 and l2 penalizations get weighted. For the Lasso approach

λ = 1, so the loss function only depends on the penalty parameter α.

We do not tune the penalty parameters α and λ. Instead we use a grid of penalty

parameters and generate one-month ahead forecasts recursively for each combination of

hyperparameters. We refit the model every year, such that the parameters β are updated

every twelve months. For Lasso we consider an evenly spaced grid of 20 values of the α

hyperparameter between 0.0001 and 0.015. The lowest value (0.0001) corresponds to a very

small penalty term while the upper value effectively excludes any predictor variables from

being included, so higher values yield the same results. For Elastic Net we use the same grid

for α while for λ we consider a grid between 0.2 and 0.8, with 0.05 increments, resulting in

9

13 settings. For λ there is a natural range between zero and one, so the main issue is how

fine a mesh to use.7

2.4 Tree-based Models

Tree-based methods have been widely used in the ML literature. We focus on Random

Forests and Gradient Boosted Trees, specifically Extreme Gradient Boosting, as regular-

ization methods. Both offer non-parametric flexibility and are distinctive from traditional

econometric methods.

Trees aim to identify groups of observations exhibiting similar behavior. A tree grows

by sequential branching; data with similar behavior and characteristics are selected, forming

the foundation for subsequent growth and branching of the tree. These branches, created

in subsequent steps, group the remaining data from previous stages and organize them into

bins or suitable intervals, approximating the functional form g(·) in Equation (2).8

At each node l of the tree, the algorithm evaluates potential splits by considering a subset

of the predictors (features).9 Let Fl ⊆ {1, 2, ..., K} denote the set of features considered at

node l, and F = |Fl| the number of features. The splitting criterion is based on minimizing

the impurity of the three, following an l2 penalty quantified by the loss function Lcart(θl, Cl):

Lcart(θl, Cl) = 1
|Cl|

∑
Xi,t−1∈Cl

(
ri,t − θl

)2
, (8)

where |Cl| is the number of samples at node l and the mean target value at node l is

θl = 1
|Cl|

∑
Xi,t−1∈Cl

ri,t. (9)

For each feature j ∈ Fl and potential split value s, the dataset Cl is divided into two
7When producing forecasts with the Lasso and the Elastic Net methods, we also allow a constant to be

included in the feature space. However, at each point of re-estimation and for each penalty parameter, we
allow the model the flexibility to determine whether or not to include the constant.

8Bagging and boosting algorithms both utilize classification and regression trees (CART) (Breiman et al.,
1984) as the foundation for constructing individual trees. The defining characteristic of CART is its binary
splitting process, where each node divides into exactly two child nodes.

9The growth of the tree starts with the root node l0 which contains all samples in the training set, Sl0 .

10

Figure 1: Example of a Classification and Regression Tree

Example of a classification and regression tree with depth D = 3 and L = 4 leaves. Here, Xi,t−1,j denotes
the value of feature j for asset i at time t − 1. Each node determines the optimal splitting feature j∗ and
value s∗ via Equation (10). Leaf values θl represent the outcomes at each terminal node.

True

True

True

False

False

False

θ1

θ4 θ3

θ2

Xi,t – 1, < s*
0*

0
j

Xi,t – 1, < s*
1*

1
j

Xi,t – 1, < s*
2*

2
j

subsets Cl,1(j, s) and Cl,2(j, s). The optimal split (j∗, s∗) is then determined as

(j∗, s∗) = arg min
j,s

[
Lcart(θl,1, Cl,1(j, s)) + Lcart(θl,2, Cl,2(j, s))

]
. (10)

This process is applied recursively until a stopping criterion is reached: when the tree ex-

pansion reaches the predefined maximum depth D, the number of samples at node l drops

below Sl, or the resulting leaf nodes would have fewer samples than SL.10

The final prediction is based on the average target values present in the samples of each

leaf node in Equation (9). The prediction for a given feature set Xi,t−1 is computed using

the combined contributions from all L leaf nodes of tree b:

r̂
(b)
i,t =

L∑
l=1

θl 1{Xi,t−1∈Cl}, (11)

where 1{Xi,t−1∈Cl} is an indicator function which equals 1 when Xi,t−1 falls within the sample

space of leaf node l, and is 0 otherwise.

A tree of depth D has the ability to capture (D−1)-way interactions but this flexibility of

tree models comes at the cost of being highly prone to overfitting. Regularization techniques

are used to overcome this problem. We consider Random Forests and Boosting. Both use
10As we re-estimate the model parameters, the splits and consequently θl depends on time t. For ease of

notation, we omit the subscript t from θl.

11

ensemble methods to combine forecasts from a set of individual tree predictors.

2.4.1 Random Forest

The Random Forest (RF) method introduced by Breiman (2001) employs a bagging proce-

dure over a collection of decision trees to minimize the variance in predictions. This process

draws multiple bootstrap samples from the dataset and, for each sample b = 1, ..., B, con-

structs a regression tree based on the CART procedure.

The predictive power of the RF method comes from its ability to average forecasts from

the individual trees, reducing the risk of overfitting and improving the overall predictive

accuracy. The aggregated final prediction of the Random Forest is

g(Xi,t−1; θ) = 1
B

B∑
b=1

r̂
(b)
i,t , (12)

where r̂
(b)
i,t is the prediction from an individual tree in the forest.

Our choice of hyper parameter grid configuration focuses on evaluating the most influ-

ential hyperparameters that impact model performance (Probst et al., 2019):11

Number of trees in the forest, B. This hyperparameter influences the model’s ability to

generalize; more trees usually lead to better performance but also increase the computational

complexity. We consider B ∈ {30, 100, 500}.

Maximum depth of a tree, D. A deeper tree can model more complex relationships by

allowing more splits but also increases the risk of overfitting. D is a critical parameter for

controlling the balance between bias and variance. We set D ∈ {1, 2, 4, 6, 8}.

Features in each split, F . The parameter F represents the number of features to consider

at each split in the individual tree, dictating the size of the subset of features selected

randomly from the total of K explanatory variables for evaluation at each decision node.

We consider the grid F ∈ {1, 3, 10, 50, 70}.
11We also considered varying the hyperparameters for the minimum internal node size and the minimum

node size. However, these do not have a significant impact on out-of-sample performance.

12

2.4.2 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost), an advanced implementation of Gradient Boosted

Trees (Friedman, 2001), is a highly efficient and scalable algorithm for tree boosting. Unlike

the traditional GBT that incrementally builds trees to minimize predictor bias through

weak learners, XGBoost, developed by Chen and Guestrin (2016), applies gradient descent

optimization within the context of boosting, enabling the recursive construction of trees.

An advantage of XGBoost over methods like Random Forest is its approach to ensemble

learning which involves optimizing Equation (8). This loss includes l1 and l2 regularization

terms, crucial for controlling model complexity and preventing overfitting.12

The core of XGBoost lies in the sequential addition of trees with each tree designed to

correct the residuals of all previous trees. These trees are commonly referred to as weak

learners. In each boosting round b, a tree fb is trained using the features Xi,t−1 with the

objective to predict the residuals from the predictions made in round b− 1. Here, fb(Xi,t−1)

denotes the output of the b-th tree. The learning rate, η, is crucial in this process—controlling

the contribution of each new tree and ensuring a controlled learning process. The cumulative

prediction, r̂
(b)
i,t , is updated sequentially by adding the contribution of the b-th tree to the

previous prediction;

r̂
(b)
i,t = r̂

(b−1)
i,t + ηfb(Xi,t−1). (13)

The boosting process continues until the maximum number of rounds B is reached or other

stopping criteria are met. Again, we consider a range of settings for the hyperparameters:

Number of trees in the forest, B. This hyperparameter influences the model’s ability to

generalize; more trees usually lead to better performance but also increases computational

complexity. We consider B ∈ {1, 100, 500}.

Maximum depth of each tree in the forest, D. Deeper trees can model more complex

relations by allowing more splits, but also increase the risk of overfitting. D is a critical
12Extreme Gradient Boosting constructs binary trees where each internal node is split into two child nodes.

This methodology parallels the fundamental structure of CART, but XGBoost diverges from CART’s greedy
algorithm. Instead of making the best immediate split based on an MSE criterion, XGBoost uses a gradient
boosting mechanism—allowing for an objective function of the general loss function form in Equation (3)
with penalty term. This mechanism involves calculating the gradients and Hessian of the loss function,
enabling the algorithm to efficiently determine the optimal splits by evaluating how effective each split is in
reducing the overall loss.

13

parameter for controlling the balance between bias and variance. We set D ∈ {1, 2, 4, 6}.

Learning rate, η. The learning rate controls the step size of the prediction updating

process. This parameter helps to ensure gradual improvement and prevent overfitting. We

consider the grid η ∈ {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4}, which includes the default value

of 0.3 and covers the range often found to be optimal in empirical applications, typically

between 0.01 and 0.2 (see, e.g., Chen and Guestrin (2016) and the corresponding XGBoost

documentation).

We use histogram-based boosting as the booster method, which is a fast implementation

that approximates the greedy algorithm. The l1 and l2 regularization on the weights are set

to α = 0 and λ = 1, respectively.13

Further, early stopping is a well-known technique employed in machine learning to prevent

overfitting and enhance model generalization. The model is trained on a training set, and the

performance is evaluated on a validation set. The training process is halted when the model’s

performance on the validation dataset ceases to improve or starts to degrade, ensuring that

the model does not become overly specialized to the training data. We set the patience

parameter to 5, indicating the number of consecutive iterations during which no improvement

is observed in the model’s performance—see Algorithm 1. When early stopping is used, we

do not retrain the model on both the training and validation sets and instead use the model

to directly make predictions on the test set. This approach helps ensure that the model’s

evaluation on the test set remains consistent with its ability to generalize to unseen data.

2.5 Neural Networks

Neural networks are anchored in their ability to approximate a broad range of continuous

functions (Kolmogorov, 1957; Cybenko, 1989; Hornik et al., 1989). Specifically, a Feed-

Forward Neural Network (FNN) with a single hidden layer and a finite number of neurons can

approximate any continuous function on compact subsets of real numbers, given appropriate

parameters and activation functions. In FNNs, data travels exclusively forward starting from
13Note that in the context of XGBoost, the parameters α and λ have definitions that differ slightly from

their usage in the Elastic Net. Here, they directly correspond to the l1 and l2 penalization, respectively.
Additionally, we investigate a range of values for α and λ, as well as the proportions of observations and
features randomly sampled for each tree. However, these values do not affect the model’s performance.

14

https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html

Figure 2: Example of a Feed Forward Neural Network

Example of a Feed Forward Neural Network with H = 1 hidden layer. There are K blue input nodes
corresponding to each feature, Xi,t−1,k. The hidden layer contains 3 neurons, marked in orange, and the
output layer is the pink node. The function f(·) in the hidden neurons denotes the activation function.

. . .
. . .

ri,t^

3x(1)~

2x(1)~

1x(1)~

ω (1)
1,1

ω (1)
1,2ω (1)

1,3

ω (1)
2,3

ω (1)
2,2

ω (1)
K,1

ω (1)
K,2

ω (1)
K,3

ω (1)
2,1

ω (2)
2,1

ω (2)
1,1

ω (2)
3,1

f ().
Xi,t –1,1

Xi,t –1,2

Xi,t –1,K

the input layer, passing through (multiple) hidden layers, and aggregating in the output layer.

Each neuron in the hidden layers represents a distinct feature of the data. The initial input

layer receives the predictor input, which then gets processed and transformed non-linearly

through H hidden layers. The output layer aggregates the transformed data, yielding a

prediction. Thus, g(·) in Equation (2) is approximated by the hidden layers. Figure 2 shows

a visual representation of a FFN with one hidden layer containing three neurons.

We construct the FNNs in the following way. Let x̃
(ℓ)
k denote the output coming from

neuron k in layer ℓ, and let x̃(ℓ) =
(
x̃

(ℓ)
1 , ..., x̃

(ℓ)
Kℓ

)′
, with Kℓ being the number of neurons in

layer ℓ. The input layer takes data x̃(0) = X ′
i,t−1 and forwards it to the fully connected first

hidden layer. We recursively construct the output of each neuron k in layer ℓ > 0 as

x̃
(ℓ)
k = f

(
x̃(ℓ−1)′ω

(ℓ)
k + ω

(ℓ)
0

)
, (14)

where ω
(ℓ)
k are the weights of neuron k in layer ℓ. The bias term ω

(ℓ)
0 in layer ℓ allows the

activation function to shift, enabling the model to effectively fit the data regardless of input

15

values. Further, f(·) is the activation function. Finally, the prediction r̂i,t is computed as

g(Xi,t−1; θ) = x̃(H)′ω(H+1) + ω
(H)
0 , (15)

where x̃(H) denotes the output from the last hidden layer, ω(H+1) the weights linking these

to the final layer and ω
(H)
0 the final layer bias term, summarizing the contributions of each

neuron in the last hidden layer for the prediction.

To determine the optimal weights of the neural nets ω
(ℓ)
k , we consider two loss functions,

namely mean squared error of Equation (4) and Huber loss of Equation (5). Determining

the optimal weights of a neural network is often computationally inefficient using standard

stochastic gradient descent. We use the Adaptive Moment Estimation (Adam) optimizer

from Kingma and Ba (2014), which enhances efficiency by adjusting the learning rate for

each parameter during training. Let ωd represent the weights and biases across all layers at

step d. The weight update mechanism at step d operates as follows;

ωd = ωd−1 −
η · m̂d√
v̂d + ϵ

, (16)

where η is the Adam learning rate, m̂d and v̂d are bias-corrected estimates of the gradient’s

first and second moments of the loss function, and ϵ = 10−8 prevents division by zero. The

Adam optimizer is shown in Algorithm 2.

We follow Gu et al. (2020) and consider five types of FNNs, labeled FNN1 through

FNN5, corresponding to H = 1 to H = 5 hidden layers, respectively. The number of

neurons decreases by half for each subsequent layer and follow a geometric pyramid that

starts from 32. FNN1 thus has a single layer with 32 neurons and FNN5 features five layers

with 32, 16, 8, 4, and 2 neurons, respectively. As in Figure 2, all layers are fully connected

such that every neuron receives its input from the preceding neurons.

Activation function f(·). We focus on the linear activation function and the rectified lin-

ear unit (ReLU) activation function; ReLU = max(0, x). The ReLU function allows for faster

derivative evaluation and favors sparsity. However, ReLU can result in zero outputs, stop-

ping learning in some neurons. To mitigate this, we also use Leaky ReLU = max(0.01x, x),

16

which maintains a nonzero gradient for inactive units, ensuring continuous learning.14

Adam learning rate η. The learning rate of the optimizer in Equation (16), is critical

for performance, as demonstrated by Bergstra and Bengio (2012) on seven datasets. We

consider the set η ∈ {0.0001, 0.001, 0.01, 0.1}, which includes the default value of 0.01 as

suggested by Kingma and Ba (2014) and contains and extends those used in prior financial

literature (Table 1).

Shrinkage penalty α. As neural nets are heavily parameterized, some form of regulariza-

tion needs to be introduced. We therefore introduce an l1 penalty term on the weights in

the loss function, similar to the Lasso approach. In practice, α = 0.01 is often used. We

consider α ∈ {0.0001, 0.001, 0.01, 0.1}.

As in XGBoosting, we also perform early stopping in the feed-forward neural networks.

Amari et al. (1995) show that early stopping in neural networks always decreases the gen-

eralization error, leading to better performance on unseen data. We use a validation set for

the stopping criteria. If the objective function does not improve after 5 iterations, we stop

the training. For training, we use 100 epochs.15

2.6 Summary of Hyperparameter Ranges

For each model type, Table 2 summarizes which hyperparameters we vary along with the

range of values taken. The total number of hyperparameters under consideration is obtained,

for each model type, as the product of each set of hyperparameter listed in the table and

ranges from 20 for the Lasso approach to 260 for Elastic Net models.

3 Data

Our data consists of monthly values of firm-level stock returns and characteristics obtained

from CRSP and Dacheng Xiu’s website, respectively. We measure returns in excess of the
14The Sigmoid and Tanh function are also common choices as activation functions. However, these func-

tions are susceptible to saturation with low signal-to-noise input, leading to a vanishing gradient (Glorot
and Bengio, 2010). This limits the model’s ability to learn from weak signals.

15Prechelt (2002) shows that increasing the patience results in small improvements at the cost of increased
computation time. Further, increasing the number of epochs has minimal effect on the performance.

17

https://dachxiu.chicagobooth.edu

Table 2: Ranges of hyperparameters for the ML models

Model Type Model Hyperparameter Grid size Grid range

Linear Lasso Shrinkage strength α 20 {0.0001, 0.009, ..., 0.015}

Linear Elastic Net Shrinkage strength α 260 {0.0001, 0.009, ..., 0.015}
(l1, l2) penalty mix λ {0.2, 0.25, ..., 0.8}

Tree-based Random Forest Number of trees B 75 {30, 100, 500}
(RF) Maximum depth of tree D {1, 2, 4, 6, 8}

Number features in split F {1, 3, 10, 50, 70}

Tree-based Extreme Gradient Number of trees B 84 {1, 100, 500}
Boosting (XGB) Maximum depth of tree D {1, 2, 4, 6}

Learning rate η {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4}

Neural Nets Feed Forward Activation functions f(·) 96 {Leaky, linear, ReLU}
NN 1–5 Loss function L(·) {MSE, Huber}

Adam learning rate η {0.0001, 0.001, 0.01, 0.1}
l1 shrinkage penalty α {0.0001, 0.001, 0.01, 0.1}

risk-free rate proxied by the 1-month Treasury Bill rate obtained from Kenneth French’s

website. As in Gu et al. (2020), we assume that monthly, quarterly, and annual data are

accessible to investors with one-month, four-month, and six-month lags. Details on the

frequency and description of the characteristics are reported in Table A.1.

The dataset contains many missing entries. For every month we only consider firms from

which the monthly return is available since our goal is to predict excess returns. Although

the original data goes further back in time, to balance the cross-sectional and time-series

dimension, we choose a dataset that ranges from January 1977 to December 2021, contains

92 firm- or stock-level characteristics and 48 industry-specific dummies, resulting in 140

features.16 Before 1985, there are between 300 and 800 firms in our dataset each month.

After 1985, the number of firms averages 1500 per month. In total there are 6,840 unique

firm numbers.

3.1 Missing Characteristics and Data Transformations

Missing data points are typically not random draws and so need to be carefully handled.

Data missing earlier in our sample arises primarily due to coverage issues while missing

data later in the sample occur mostly because of the Global Financial Crisis (GFC) and the

COVID pandemic. To address the issue of missing characteristics in our dataset, we follow
16The original panel of characteristics goes back to January 1957. However, data prior to 1977 has many

missing entries.

18

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Bryzgalova et al. (2024) and consider data from January 1977 onward since the frequency

of missing characteristics is significantly lower after 1976. Furthermore, we consider 92

characteristics instead of 94, since two of these (real estate holdings and secured debt) are

only available from 1985 onward, and even then, only sparsely available across time.

Next, we employ the local backward (B-XS) model of Bryzgalova et al. (2024) which fills

data by using contemporaneous cross-sectional information and recent historical character-

istics.17 The B-XS model is the best-performing model that does not use forward-looking

information for imputing characteristics in terms of out-of-sample mean squared error. For

cross-sectional fitting we use the settings of Bryzgalova et al. (2024). That is, we capture

the cross-sectional dependence using six latent factors, we only consider stocks that have at

least ten characteristics observed at each point in time, and we use the covariance struc-

ture between the characteristics of January 1985 to avoid look-ahead bias. After converting

the characteristics to rank percentiles, we impute the missing data and then transform the

imputed rank quantiles back to their original values using the empirical distribution.18

The characteristics are measured on different scales and so are not directly comparable.

To handle this issue, we cross-sectionally rank the explanatory variables for each period

and scale them to the [−1, 1] range, as proposed in Gu et al. (2020). This method is more

robust to outliers than conventional standardization method because it imposes boundaries

at −1 and 1. However, it also has some drawbacks. Cross-sectionally ranking the variables

between −1 and 1 erases information about the level of the variables. We further construct

dummies based on the first two digits of the Standard Industrial Classification (SIC) codes.19

To obtain as granular a grouping as possible, but with a sufficient number of firms, we group

some of the first two digits of the SIC numbers which results in 48 dummies.20

17We are grateful to Markus Pelger and Sven Lerner for sharing their code with us.
18Note that we handle missing data very differently from Gu et al. (2020) who fill firm-level missing

characteristics with zeros.
19Appendix Table A.2 shows the grouping we use.
20We exclude macroeconomic predictors because the scaling process eliminates the information these vari-

ables contain. Because our most flexible ML models can capture complex non-linear relations and interaction
terms we do not take the Kronecker product between characteristics and macro variables.

19

Figure 3: Training, Validation, and Test Samples

Panel (a) shows the training (estimation) window for the procedure that uses fixed hyperparameters. The
model undergoes training using the training dataset, shown in light blue, and performs out-of-sample pre-
dictions on the test dataset, shown in purple. Panel (b) shows the estimation process incorporating a 2-year
validation period. If validation or early stopping mechanisms are applied, the model is trained with the
training set (light blue) and validated on the validation set (dark blue). If early stopping is not employed,
the model parameters are re-estimated using both the training and validation sets before making out-of-
sample predictions on the test set (purple).

(a) Estimation procedure for fixed hyperparameter grids
1

2

3

25

...

1977 1997 2021

(b) Estimation procedure for validated models

1977 1994 1997 2021

1

2

3

25

...

Training set
Validation set
Test set

3.2 Training and Test Set

To examine the sensitivity of our return predictability results with respect to the values of

the hyperparameters, we split our data into training and test sets. The training set is used to

estimate the model parameters and our initial training uses the first 20 years from January

1977 to December 1996. The test sample evaluates the performance of the model on unseen

data and is the 25-year out-of-sample period from January 1997 to December 2021 (300

months). Using an expanding estimation window, we update the model parameters every

12 months as visualized in the upper panel in Figure 3. The validation procedure (shown in

the lower panel of Figure 3) is discussed in Section 5.

20

3.3 Evaluation of Forecasts

We evaluate predictive performance by means of the widely used out-of-sample R2 measure

of Campbell and Thompson (2008) generalized to account for multiple stocks:

R2
OoS = 1−

(T − T0)−1 ∑Nt
i=1 N−1

t

∑T
t=T0+1

(
ri,t − r̂

(m)
i,t

)2

(T − T0)−1 ∑Nt
i=1 N−1

t

∑T
t=T0+1

(
ri,t − r̂

(bm)
i,t

)2 , (17)

where T0 is the start of the test sample which ends at time T , Nt is the number of firms

in existence at time t, r̂
(m)
i,t denotes the predicted excess returns from model m, r̂

(bm)
i,t is

the benchmark forecast, and ri,t is the realized excess return of stock i at time t. R2
OoS is

a relative measure tracking the predictive accuracy of model m relative to the benchmark

forecasts with positive values indicating outperformance. As in Gu et al. (2020), we use zero

prediction as the benchmark model, i.e., r̂
(bm)
i,t = 0 for all i and t.21

We use the Diebold-Mariano (DM) test (Diebold and Mariano, 1995) to test for signif-

icance in the differences between the out-of-sample predictive accuracy of our models and

the zero prediction. Specifically, we use a cross-sectional adaptation of the DM test to test

forecast accuracy. The prediction error differential for time t is defined as

dt = 1
Nt

Nt∑
i=1

((
ê

(bm)
i,t

)2
−

(
ê

(m)
i,t

)2
)

. (18)

where ê
(bm)
i,t = ri,t and ê

(m)
i,t = ri,t−r̂

(m)
i,t . The DM statistic for model m is then DMm = dm/σ̂dm

,

where dm is the time series average of dt and σ̂dm
is the Newey-West standard error.

To track the time-series evolution in the predictive accuracy of model m versus the

benchmark, we also plot the cumulative sum of squared error differences CSSEDτ = ∑τ
t=t0 dt

over the test set.
21Alternatively, one could use the prevailing mean, ri,t = 1

t−1
∑t−1

τ=0 ri,τ , which is the average excess return
of firm i until t − 1, as a benchmark. However, the prevailing mean is noisy and generates a 4.5% higher
MSE compared to the zero prediction for individual stocks.

21

4 Results

In this section, we report the forecasting performance of the models introduced in Section

3. We summarize the sensitivity of our R2
OoS measure of predictive accuracy with respect to

hyperparameter values through boxplots constructed by fixing one hyperparameter at a given

value while allowing the remaining hyperparameters to vary across the grid values listed in

Table 2. Each boxplot, complete with whiskers, displays the range of R2
OoS values achievable

as we vary the other hyperparameters within a predetermined grid. Our boxplots follow

standard practice: the central box encompasses the interquartile range (IQR) between the

25th percentile, q0.25, and the 75th percentile, q0.75, so IQR = q0.75−q0.25. The line inside the

box corresponds to the median, q0.50. Whiskers visualize the range of R2
OoS values outside the

middle 50%, using the 1.5×IQR rule. Hence, the lower whisker extends from the first quartile

(q0.25) to the lowest data point not below q0.25 − 1.5 × IQR while the upper whisker goes

from the third quartile (q0.75) to the highest data point not above q0.75 + 1.5× IQR. Values

outside the boundaries of the whiskers are plotted as individual points and are considered

outliers.22

4.1 Linear Models

Figure 4 panel (a) shows the sensitivity of the out-of-sample performance of Lasso across

values of the single hyperparameter, α, which controls the amount of shrinkage with larger

values of α corresponding to a higher level of regularization. The R2
OoS ranges from −0.2 for

penalty terms approaching zero to 0.38 for small α values. The R2
OoS curve is flat at zero

for α > 0.01 because the Lasso approach does not select any predictor variables. Supporting

this interpretation, Panel (b) of Figure 4 plots the percentage of non-zero coefficients over

the estimation window. When α > 0.01, the estimated coefficients for all models are reduced

to zero across every window.
22For example, for a random forest model we fix hyperparameter B at 30, and let the hyperpa-

rameters D and F vary over the grid, which could result in the following range of R2
OoS values:

{−0.05, 0.18, 0.22, 0.23, 0.28, 0.3, 0.35, 0.39, 0.41}. The corresponding central box ranges from 0.22 to 0.35, as
the corresponding percentiles are q0.25 = 0.22 and q0.75 = 0.35, and IQR = 0.13. The median is 0.28. The
lower whisker is determined by the smallest value still above q0.25 − 1.5× IQR = 0.025, which is 0.18. The
upper whisker is 0.41, which is the highest value still below q0.75 + 1.5 × IQR = 0.545. The value −0.05 is
shown by a dot.

22

Figure 4: Sensitivity of R2
OoS to Lasso hyperparameter (α)

Panel (a) shows the sensitivity of R2
OoS , expressed as a percentage, with respect to different choices of α.

Panel (b) shows the percentage of variables Xi,t included by Lasso for different values of α.

(a) Sensitivity of R2
OoS to l1 shrinkage α

0.
00

01

0.
00

09

0.
00

17

0.
00

25

0.
00

32

0.
00

40

0.
00

48

0.
00

56

0.
00

64

0.
00

72

0.
00

79

0.
00

87

0.
00

95

0.
01

03

0.
01

11

0.
01

19

0.
01

26

0.
01

34

0.
01

42

0.
01

50

α

−0.1

0.0

0.1

0.2

0.3

0.4

R
2 O
oS

(b) Percentage of selected variables

0.
00

01

0.
00

09

0.
00

17

0.
00

25

0.
00

32
0.
00

4

0.
00

48

0.
00

56

0.
00

64

0.
00

72

0.
00

79

0.
00

87

0.
00

95

0.
01

03

0.
01

11

0.
01

19

0.
01

26

0.
01

34

0.
01

42
0.
01

5

α

0

10

20

30

40

50

60

P
er

ce
n
ta

ge
n

on
-z

er
o
β̂
k

Figure 5 shows the sensitivity of R2
OoS for the Elastic Net across the range of values for

the two hyperparameters, α and λ. Panel (a) shows the sensitivity of R2
OoS when keeping

the amount of shrinkage (α) fixed at a given value while varying the (l1, l2) penalty mix

λ. For α = 0.0001, the range of R2
OoS values is between −0.5 and −0.25 consistent with

underperformance against the zero benchmark. Performance improves when α is fixed around

0.001 and gets a further boost once we increase α to 0.003 or 0.004 which raises the average

R2
OoS value and narrows its range so that even the worst model across the grid of λ values

performs better than the median performer for α = 0.001. Increasing α beyond these values

pulls the R2
OoS towards zero and expands the range of R2

OoS values, thus increasing the risk

of selecting a model with poor forecasting performance.

Panel (b) of Figure 5 shows the range of R2
OoS values for a given value of the (l1, l2)

penalty mix parameter λ while varying α. The performance of both the median and best

models is less sensitive to the choice of λ than to the choice of α. Outliers marked by dots

occur for the lowest value α = 0.0001 which results in too many predictors being selected

and noisy forecasts. Higher values of λ tend to increase the minimum R2
OoS value.

23

Figure 5: Sensitivity of R2
OoS to hyperparameters for Elastic Net

The figure displays the sensitivity of the out-of-sample R2
OoS in percentage for the panel of individual stocks

on the test sample from January 1997 to December 2021 for the Elastic Net. Panel (a) varies the level of
shrinkage (α) while Panel (b) varies the penalty mix parameter (λ).

(a) Shrinkage (α)

0.
00

01

0.
00

09

0.
00

17

0.
00

25

0.
00

32
0.
00

4

0.
00

48

0.
00

56

0.
00

64

0.
00

72

0.
00

79

0.
00

87

0.
00

95

0.
01

03

0.
01

11

0.
01

19

0.
01

26

0.
01

34

0.
01

42
0.
01

5

α

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

R
2 O
oS

(b) Penalty mix (λ)

0.
2

0.
25 0.

3
0.
35 0.

4
0.
45 0.

5
0.
55 0.

6
0.
65 0.

7
0.
75 0.

8

λ

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

R
2 O
oS

4.2 Tree-based Models

Figure 6 panel (a) presents the range of R2
OoS values for the random forest models whose

hyperparameters are B, the number of trees averaged over by the random forest; D, the

maximum depth of each tree; and F , the number of features considered for each split. Out-

of-sample performance for the median, top-quartile and best model is robust with regards

to the choice of the number of trees (B). Conversely, the worst and bottom-quartile models

perform notably poorer when B = 30 than when B = 500. The maximum depth of the trees

(D) is more important. For D = 1, the range of R2
OoS values is narrow and centered around

0.30. Increasing D shifts the median value of R2
OoS down and increases the range of values

so that, when D = 6, the median model generates a negative R2
OoS. A similar pattern is

observed from increasing the number of features in the split, F . When F = 1, the range

of R2
OoS values is narrow and centered around 0.30. Increasing F beyond this value reduces

the average R2
OoS and expands its range.23 Limiting the number of features to just one per

tree increases diversity among the trees in the ensemble, in contrast to using many features

which can lead to trees splitting on similar information. This increased diversity strengthens

model generalization, resulting in a consistently narrow range of performance metrics as the

Random Forest averages the outputs of these diverse trees.

23The minimal internal and leaf node size barely affect the out-of-sample performance.

24

Figure 6: Sensitivity of R2
OoS to hyperparameters for tree-based models

This figure shows the sensitivity of the out-of-sample R2
OoS in percentage for the panel of individual stocks

from January 1997 to December 2021 for Random Forest and Extreme Gradient Boosted Trees. For Random
Forests, Panel (a) displays the sensitivity to the number of trees B, tree depth D, and the number of features
F . For Extreme Gradient Boosted Trees Panel (b) shows the sensitivity to the number of trees B, tree depth
D, and the learning rate η. The Boosted trees are trained with early stopping with a patience of 5, where
the early stopping criteria are based on the lowest MSE within a 2-year validation set.

(a) Random Forest

30 100 500
B

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

R
2 O
oS

Number of trees

1 2 4 6 8
D

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

R
2 O
oS

Max. depth of tree

1 3 10 50 70
F

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

R
2 O
oS

Number of features

(b) Extreme Gradient Boosting

1 100 500
B

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

R
2 O
oS

Number of trees

1 2 4 6
D

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

R
2 O
oS

Max. depth of tree

0.0001 0.001 0.01 0.1 0.2 0.3 0.4
η

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

R
2 O
oS

Learning rate

Figure 6 panel (b) shows the R2
OoS for the Extreme Gradient Boosted Regression Trees.24

The number of trees (B) has little effect on predictive performance. In contrast, the max-

imum depth of the trees and the learning rate are both important. Shallow trees (low D)

perform best and settings D = 4, 6 result not only in a decline in the median model’s per-

formance but also widens the range of R2
OoS values with the bottom-quartile model having

a negative R2
OoS value. The learning rate also has a large impact on R2

OoS values with

η = 0.3, 0.4 leading to poor performance for the bottom-quartile models which now generate

a R2
OoS value close to −1 and −2, respectively.

The interplay between the learning rate and tree depth in XGBoost is key to under-

standing its out-of-sample forecasting performance. A combination of low depth and a high
24Note that the specified number of trees does not reflect the actual number of constructed trees or boosting

rounds since we use early stopping.

25

learning rate generally strikes a good balance between model complexity and learning effi-

ciency. Low depth together with a low learning rate tends to produce overly conservative

models and is indicative of underfitting. High depth with a low learning rate results in con-

servative performance, while a high depth alongside a high learning rate typically leads to

poor model performance due to overfitting and instability in the learning process.

4.3 Neural Networks

We finally turn to the NN models. Panel (a) in Figure 7 shows out-of-sample forecasting

performance across NN models that fix the number of hidden layers H between 1 and 5 and

vary all other hyperparameters, resulting in a total of 96 settings per NN specification. The

box plots feature a broken y-axis to accommodate the wide variation in performance. The

lower segment of the axis is deliberately capped at −30. For each hidden layer count (H),

the figure features three box plots: the first utilizes a 6-month set for early stopping, the

second a 2-year set, and the third a 10-year set for this purpose. For all architectures, both

the median and the worst-performing models exhibit better out-of-sample performance on

the 2-year set compared to the 6-month and 10-year period. The improved out-of-sample

performance achieved with a 2-year early stopping period suggests that there is a trade-

off between incorporating more recent data into the training process and maintaining a

sufficiently large early stopping set. Moreover, the use of a larger (smaller) early stopping

sample has the potential to result in underfitting (overfitting) during training, consequently

leading to a decline in out-of-sample performance.

Figure 7 panel (b) focuses on the performance of a specific network architecture, NN2,

over a 2-year validation period. To conserve space, we only report the NN2 architecture

for the 2-year validation set as the results are very similar. The ReLU activation function

performs best in terms of median performance and downside risk. Further, the out-of-sample

performance is not much affected by the training loss function. For both validation periods,

choosing the slowest learning rate η = 0.0001 or the second slowest rate η = 0.001 yields the

best results overall. For both the 6-month and 10-year validation period, performance can

be preserved by choosing a very slow learning rate. The performance differential between

26

Figure 7: Sensitivity of R2
OoS to architecture and hyperparameters for the Feed-

Forward Neural Networks

This figure shows the out-of-sample R2
OoS sensitivity, expressed in percentage, for the range of individual

stocks from January 1997 to December 2021. Panel (a) shows the sensitivity across architectures and
different set sizes used to define the early stopping criteria. The y-axis is capped at −30%. Panel (b) shows
the sensitivity across the hyperparameters of Neural Networks with H = 2 hidden layers, utilizing a 2-year
period to implement early stopping. The y-axis is capped at −12%. All models apply early stopping with a
patience of 5 based on achieving the lowest MSE during this period.

(a) NN1 to NN5 with varying early stopping period

−0.9
−0.6
−0.3

0.0
0.3
0.6

R
2 O
oS

Early stopping
period:

6 months

2 years

10 years

1 2 3 4 5
H

−30
−20
−10

(b) NN2 with a 2-year early stopping period

−0.6

−0.3

0.0

0.3

0.6

R
2 O
oS

ReLU Linear Leaky
f(·)

−12
−9
−6
−3

−0.6

−0.3

0.0

0.3

0.6

MSE Huber
L(·)

−12
−9
−6
−3

−0.6

−0.3

0.0

0.3

0.6

0.0001 0.001 0.01 0.1
η

−12
−9
−6
−3

−0.6

−0.3

0.0

0.3

0.6

0.0001 0.001 0.01 0.1
α

−12
−9
−6
−3

the validation periods can be linked to the l1 shrinkage penalty α. For both the 6-month

and 10-year validation period, the smaller value of α = 0.0001 results in underperformance,

likely due to overfitting. All in all, the best approach here is to have a smaller validation set

of for example 2-years, a relatively deep neural net architecture and apply a slow learning

rate, with some regularization.25

25In deeper neural networks with 4 or more layers, predictions become constant due to large biases ω
(ℓ)
0

dominating the effects of inputs multiplied by weights in Equation (14), pushing activation functions into
saturation. This saturation results in outputs that are insensitive to input variations, thereby hindering the
network’s ability to learn effectively from data.

27

4.4 Summary of Results

We summarize the key insights from our analysis as follows. First, our results show that it

is possible to fix a subset of the hyperparameters such that good out-of-sample forecasting

performance is achieved regardless of how the remaining hyperparameters are chosen. For

the RF method this occurs when the maximum depth D equals 1 or 2 or when only a

single feature is included (F = 1). For XGBoost, this is achieved when the maximum depth

D = 1, 2 or when the learning rate is very low. For NNs, similarly a very slow learning rate

is likely to lead to accurate forecasts regardless of how the other hyperparameters are set.

Second, the opposite also holds: the hyperparameters can be set so that poor forecasting

performance is, if not guaranteed, highly likely even when the regular parameters are chosen

optimally. For penalized linear models such as the Lasso or Elastic Net, this happens when

the shrinkage parameter (α) is very low. For the RF models this occurs when the maximum

depth or the number of features are high (e.g, D = 8 or F = 70) and for XGBoost when

D = 6 or the learning rate, η, is high. Similarly, a high learning rate tends to “noise up”

forecasts generated by NNs, leading to poor out-of-sample forecasting performance regardless

of how other hyperparameters are chosen.

Third, due to their extra flexibility, varying the grid of hyperparameters of the nonlinear

ML models tends to expand the range of R2
OoS values far more than that generated by varying

the shrinkage and penalty hyperparameters of the linear models. This widening in the range

of out-of-sample performance means that extra caution has to be exercised when evaluating

the predictive accuracy of ML methods to avoid spurious outcomes even after accounting for

the tendency of out-of-sample forecasting methods towards being conservative.

Fourth, The widening of the range of out-of-sample forecasting performance of ML models

relative to conventional linear models is highly asymmetric and left-skewed. In particular, we

see a clear upper limit on the maximum degree of outperformance achievable by these models

while, conversely, ML models with hyperparameters chosen so they are sensitive to noise are

prone to generate extremely poor out-of-sample forecasts. This pronounced “downside” risk

calls for caution by investors and portfolio managers using these models to generate forecasts

of asset returns.

28

5 Validation

So far we demonstrated the sensitivity of the predictive accuracy of return forecasts to the

choice of hyper parameters by fixing the latter across a range of values as shown in Table 2.

In this section, we present model performance using time series validation and the economic

value of return forecasts.

Because there is little theoretical guidance on selecting hyperparameters, it is common

practice in finance (e.g., Gu et al., 2020; Bianchi et al., 2021; Bali et al., 2023) to under-

take time-series validation on a pseudo out-of-sample period. Validated models use data to

determine the hyperparameters based on performance in the validation sample, rather than

setting them a priori. The validation sample is formed by partitioning the original training

sample into a training and validation sample, and is used to tune hyperparameters. The

objective of the validation procedure is to determine the optimal set of hyperparameters by

identifying the configuration that yields the best fit in the validation set.

In this section, we set out to examine whether validation methods can be used to select

hyperparameters in a way that avoids poor out-of-sample forecasting performance.

5.1 Validation Analysis and Results

Validation methods do not offer a fully automated solution to the hyperparameter selection

problem. Researchers must choose whether to use time-series validation or cross-validation,

the length of the validation window, how to split a given sample into training, validation and

test samples (sample split), and establish the initial hyperparameter grid for conducting the

validation procedure. Lastly, researchers need to decide whether early stopping is suitable

or not.26 All of these choices affect out-of-sample forecasting performance.

Following common practice in finance, we use time-series validation in our analysis as

illustrated in the bottom panel of Figure 3. To tune hyperparameters, we consider validation

sets with lengths of 6 months, 2 years, and 10 years, covering the common choices in literature
26If early stopping is implemented, the model is trained solely on the training set with the optimal hy-

perparameters without re-estimating the model parameters on the combined training and validation sets.
Conversely, if early stopping is not used, the model is re-estimated using both the training and validation
sets after determining the optimal hyperparameters.

29

Table 3: Performance statistics for the validated models

We report the monthly R2
OoS in percentage, and the corresponding Diebold-Mariano (DM) statistic for

the validated models with different validation periods, where the MSE is used as the evaluation metric.
For XGBoost and neural networks, e.s. refers to early stopping which is based on the same period as the
validation procedure.The DM statistic is asymptotically normally distributed.

Lasso Elastic Net Random Forest XGBoost (e.s.) NN2 (e.s.) NN5 (e.s.)
DM R2

OoS DM R2
OoS DM R2

OoS DM R2
OoS DM R2

OoS DM R2
OoS

6 months 0.401 0.069 0.323 0.059 -0.475 -0.242 -1.398 -0.795 -3.294 -2.753 -3.755 -3.204
2 years 0.624 0.153 1.056 0.254 0.160 0.013 0.648 0.221 -1.310 -0.451 -1.836 -0.669
10 years 0.828 0.170 0.395 0.081 0.526 0.143 0.636 0.197 0.785 0.195 1.170 0.282

(Gu et al., 2020; Bali et al., 2023). The shorter validation set ensures that the model captures

the latest information while the 10-year set captures a broader range of economic conditions

which could improve the model’s ability to generalize across different scenarios. We use the

hyperparameter grids shown in Table 2 for the the validation exercise.

Table 3 reports R2
OoS values for different validation windows. The length of the validation

window is crucial to the models’ performance. Specifically, tree-based models and neural

networks exhibit subpar performance with a validation set of 6 months. For longer validation

windows such as 10 years, performance is generally similar to or worse than for a 2-year period

although NNs show more robust performance on the 10-year validation set.

Table 3 also reports the associated DM-statistics. None of the validated models signifi-

cantly outperform the zero benchmark throughout the out-of-sample test sample. Conversely,

the NN2 and NN5 models based on the shortest validation window significantly underperform

this benchmark.

5.2 Breakdown in Forecasting Performance

Table 3 reports the sample-average forecasting performance for different models but does

not provide any indication of how this evolves over time or whether forecasting performance

breaks down in certain periods. To examine this issue, Figure 8 displays the cumulative sum

of squared error differentials (CSSED) for our validated models against the zero prediction

benchmark, with NBER recession periods marked by vertical grey shaded areas. Each panel

30

focuses on a different model: Panel (a) for Random Forest and Extreme Gradient Boosting,

and Panel (b) for Neural Networks with 2 and 5 hidden layers.

Figure 8: Cumulative sum of squared error differentials

This figure displays Cumulative Sum of Squared Error Differentials (CSSED) with positive and increasing
values indicating that the validated model is more accurate than the zero prediction benchmark. The data
covers the test sample from January 1997 to December 2021. Grey shaded areas correspond to NBER
recession periods. Panel (a) shows the CSSED of Random Forest and Extreme Gradient Boosting, while
Panel (b) shows the performance for two Neural Networks, where the y-axis is capped at −0.11. Performance
deteriorates until −0.35.

(a) Tree-based models

2000 2004 2008 2012 2016 2020

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

C
S

S
E

D

RF: 6m val.

XGBR: 6m val.

RF: 2y val.

XGBR: 2y val.

RF: 10y val.

XGBR: 10y val.

(b) Neural Network with H = 2, 5, with early stopping

2000 2004 2008 2012 2016 2020

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

C
S

S
E

D

NN2: 6m val.

NN5: 6m val.

NN2: 2y val.

NN5: 2y val.

NN2: 10y val.

NN5: 10y val.

The forecasting performance of the tree-based models in Panel (a) deteriorates markedly

during the three recessions in our sample, most notably during the GFC. This holds across

all validation windows with the forecasts based on the six-month window experiencing the

worst deterioration in performance during these periods. Panel (b) displays the performance

of the shallow (NN2) and deep (NN5) neural network architectures, respectively. The worst

performance is again observed for a 6-month validation window while a 10-year validation

window produces better performance. The deeper architecture, NN5, shows slightly more

variability in performance compared to NN2.27

27The CSSED for Lasso and Elastic Net are reported in Appendix Table C.3. Shorter validation windows

31

Overall, the performance observed across different ML models and validation windows

exhibit similar patterns and no single model specification consistently surpasses the others

throughout the entire test period.

5.3 Cross-sectional Variation in Predictive Accuracy

The top panel of Figure 9 reports percentiles of the cross-sectional distribution of R2
i,OoS. For

most models, the R2
OoS is negative for between 25% and 50% of the stocks. The non-linear

ML models generate a significantly greater cross-sectional spread in forecasting performance

across stocks.

The bottom panel of Figure 9 illustrates how R2
i,OoS varies across firm size, captured

by sorting stocks into d = 10 market-cap deciles. The smallest firms achieve the highest

R2
i,OoS values across all models. These are generally also the firms that would have been

most costly to trade, calling into question whether the return forecasts could have been

exploited to generate economic gains. All models underperform for the largest firms, with

R2
i,OoS values turning negative from the seventh decile and onward. The performance of the

Neural Networks is, once again, particularly poor for the largest stocks.

While size is a proxy for how liquid a stock is, trading volume may provide an even better

measure of how easy it would have been to convert forecasting signals from the ML models

into trading positions. We therefore next examine results for portfolios of stocks sorted on

trading volume. Table 4 shows strong evidence that stocks with the lowest trading volume

also exhibit the strongest out-of-sample return predictability. Conversely, most methods tend

to generate negative or very small positive R2
OoS values for stocks in the top three volume-

sorted deciles. This raises concerns about whether the return predictability identified by the

ML methods could have been exploited for economic gains.

To evaluate this issue more formally, we report t-statistics as well as p-values for the

Monotonic Relation (MR) test of Patton and Timmermann (2010) designed to test if there

is a monotonically increasing relation between trading volume and return predictability.

help mitigate downturns during crises by turning to a zero prediction. The 2-year validation set typically
yields the best results, while the 6-month window is the least accurate.

32

Figure 9: Out-of-sample performance across firms

Panel (a) displays firm-level R2
i,OoS values sorted into percentiles p while Panel (b) displays firm-level R2

OoS

values for stocks grouped into ten deciles based on their firm size (cut off at −1.6%. For d = 10, the
performance deteriorates to −2% and −2.2% for NN2 and NN5, respectively). The validated models use
a 2-year validation set. All measures are reported for firms with at least 60 observations in the test set,
encompassing a total of 2774 firms. The test set ranges from January 1997 to December 2021.

(a) Percentiles (p) of stock-level R2
i,OoS

0.001 0.01 0.05 0.2 0.25 0.5 0.75 0.9 0.95 0.99 0.999
p

−12

−8

−4

0

4

8

12

R
2 i,
O
oS

Lasso

Elastic Net

Random Forest

XGBoost (e.s.)

NN2 (e.s.)

NN5 (e.s.)

(b) R2
i,OoS across size-sorted deciles (d)

1 2 3 4 5 6 7 8 9 10
d

−1.5

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

R
2 i,
O
oS

Table 4 shows that the opposite holds and that stocks with the highest trading volume

tend to be significantly less predictable than stocks with lower trading volume. Combined

with our results on the size-predictability relation, these findings suggest that converting the

return forecasts from the ML models into profitable trading strategies, after accounting for

the higher trading costs of small caps with low trading volume, would have been difficult or

offered an unattractive risk-return trade-off.

33

Table 4: Out-of-sample R2
OoS performance for portfolios sorted on trading volume

We report the R2
OoS (monthly, percentage) forecasting performance for equal-weighted decile portfolios sorted

on trading volume. We test the statistical significance of the H–L spread using HAC standard errors with
**, and * denoting significance at the 1%, 5% levels, respectively. Additionally, we report the Patton and
Timmermann (2010) monotonicity tests in the rows marked “MR Test”, for which the null hypothesis is
H0 : µi ≤ µi−1, where µi is the R2

OoS value for the ith portfolio, versus the alternative H1 : µi > µi−1.
Hence, a rejection (low p-value) is consistent with monotonically increasing R2

OoS values.

Lasso Enet RF XGBR
6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y

Low 0.47 0.63 0.53 0.62 0.79 0.40 0.34 0.75 0.48 −0.11 0.48 0.70
2 0.09 0.32 0.37 0.21 0.46 0.25 −0.20 0.18 0.24 −3.52 0.33 0.42
3 0.18 0.35 0.30 0.29 0.48 0.20 0.05 0.33 0.39 −1.65 0.39 0.33
4 0.17 0.31 0.24 0.20 0.43 0.15 −0.24 0.12 0.28 −0.23 0.43 0.24
5 −0.14 0.07 0.12 −0.10 0.15 0.04 −0.28 −0.21 0.08 −0.49 0.18 0.15
6 0.17 0.26 0.20 0.13 0.37 0.10 −0.22 −0.13 0.13 −0.35 0.23 0.13
7 0.06 0.05 0.04 −0.01 0.11 −0.03 −0.19 −0.17 0.04 −0.25 0.11 0.07
8 −0.04 −0.06 0.01 −0.20 −0.01 −0.08 −0.55 −0.26 −0.01 −0.29 0.18 0.07
9 −0.15 −0.27 −0.09 −0.34 −0.17 −0.17 −0.73 −0.29 −0.25 −0.67 0.00 −0.03
High 0.00 −0.19 −0.01 −0.17 −0.12 −0.09 −0.38 −0.17 −0.08 −0.69 −0.08 −0.10
H–L −0.47* −0.82** −0.54 −0.79** −0.91** −0.49 −0.73 −0.92 −0.56 −0.58 −0.56 −0.80*
MR Test
(p-value) 0.95 0.783 0.296 0.78 0.754 0.287 0.815 0.722 0.569 0.307 0.481 0.41

NN1 NN2 NN3 NN4 NN5
6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y

Low 0.29 0.35 −1.66 0.29 0.44 −1.86 0.01 0.38 −1.84 −0.10 0.39 −2.34 −0.29 0.37
2 −0.32 0.29 −2.54 −0.33 0.42 −2.64 −0.51 0.37 −2.56 −0.55 0.32 −2.96 −0.70 0.30
3 −0.22 0.29 −2.48 −0.18 0.40 −2.62 −0.42 0.36 −2.58 −0.46 0.37 −3.01 −0.62 0.36
4 −0.14 0.25 −2.34 −0.17 0.31 −2.48 −0.33 0.29 −2.43 −0.40 0.33 −2.79 −0.48 0.36
5 −0.54 0.16 −3.02 −0.57 0.21 −3.06 −0.64 0.17 −2.98 −0.58 0.28 −3.37 −0.69 0.30
6 −0.28 0.13 −2.94 −0.32 0.17 −3.15 −0.52 0.17 −3.13 −0.55 0.30 −3.54 −0.64 0.34
7 −0.25 0.04 −2.30 −0.35 0.06 −2.42 −0.41 0.08 −2.40 −0.43 0.17 −2.64 −0.45 0.22
8 −0.60 0.07 −3.36 −0.81 0.07 −3.51 −0.81 0.09 −3.45 −0.72 0.25 −3.79 −0.75 0.31
9 −0.86 −0.08 −3.73 −1.08 −0.08 −3.98 −1.13 −0.08 −3.84 −1.01 0.10 −4.24 −1.08 0.15
High −0.52 0.00 −2.73 −0.82 −0.04 −2.82 −0.78 −0.02 −2.77 −0.66 0.11 −3.06 −0.66 0.17
H–L −0.81** −0.35* −1.06 −1.11** −0.48** −0.96 −0.79** −0.39 −0.94** −0.55** −0.28** −0.71** −0.37** −0.20
MR Test
(p-value) 0.71 0.78 0.25 0.88 0.69 0.33 0.84 0.49 0.30 0.80 0.70 0.38 0.82 0.67 0.60

5.4 Economic Value of Return Forecasts

We next examine the economic value of our return forecasts. We sort individual stocks into

deciles based on their predicted returns for the following month and form equal-weighted

portfolios. We then construct long-short portfolios taking a long positions in stocks in the

top decile of expected returns and short positions in stocks in the bottom decile.28

Table 5 reports annualized average returns (Panel A) and Sharpe ratios (Panel B) of the

prediction sorted portfolios. The high minus low (H–L) average return spread is significant
28Gu et al. (2020) and Avramov et al. (2023) follow this procedure to evaluate the economic significance of

return forecasts. In contrast, Coulombe et al. (2022) develop a method based on Shapley values to estimate
the contributions to portfolio performance of individual variables or groups of predictors.

34

across all models and validation sets except for the NN2 and NN5 models with 10-year vali-

dation sets, demonstrating that economic performance improves for stocks with the highest

predicted return. However, we do not find any significant spreads for the Sharpe ratios.

We further evaluate whether the average returns of the decile portfolios sorted on return

forecasts are monotonically increasing using the MR test of Patton and Timmermann (2010).

Formally, we test the null of H0 : µi ≤ µi−1 against the alternative H1 : µi > µi−1 so that

rejections (small p-values) show that economic performance is higher for stocks with the

highest predicted return while a failure to reject the null suggests the opposite. We reject

the null for at most two validation windows across the Lasso, Enet, and RF methods (Panel

A). In contrast, we fail to find significant evidence of a monotonically increasing relation for

the portfolios based on the forecasts from the XGBR, NN2 and NN5 models.29 Panel B of

the table shows that the evidence is even weaker for the Sharpe ratios for which we only find

a single case (Enet with a 2-year validation window) with a significantly increasing Sharpe

ratio.

In conclusion, these results do not provide conclusive evidence that the return forecasts

generated by applying validation to choose the hyperparameters of a range of ML methods

could have been used to significantly improve economic performance.

29We also build 18 value-weighted portfolios using size, book to market, operating profitability, and in-
vestment as sorting variables. These sorts did not establish any particular patterns in return predictability
across firm characteristics beyond the size effect.

35

Table 5: Economic performance of prediction-sorted stock portfolios
We report annualized average returns in Panel A and Sharpe ratios in Panel B for portfolios sorted on return predictions from six machine learning
models: Lasso, Elastic Net (Enet), Random Forest (RF), Extreme Gradient Boosted Trees (XGBoost), and feed-forward neural networks with 2 and
5 hidden layers (NN2, NN5). The machine learning models are validated using windows of 6 months (6m), 2 years (2y), and 10 years (10y). We
test the statistical significance of the H–L spread using HAC standard errors with **, and * denoting significance at the 1%, 5% levels, respectively.
Additionally, we report the Patton and Timmermann (2010) monotonicity tests in the rows marked “MR Test (p-value)”, for which the null hypothesis
is H0 : µi ≤ µi−1, where µi is the mean of the return measure for the ith portfolio, versus the alternative H1 : µi > µi−1. Hence, a rejection (low
p-value) is consistent with monotonically increasing mean returns or Sharpe ratios. All portfolios are equal-weighted.

Panel A: Average Returns
Lasso Enet RF XGBoost NN2 NN5

6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y
Low 10.44 8.46 12.59 10.65 8.29 13.03 10.53 11.65 10.66 12.26 13.12 13.22 12.58 10.53 13.24 16.25 13.79 14.75
2 9.01 9.51 9.70 12.17 6.78 9.53 12.25 13.83 9.61 14.60 6.98 22.07 10.10 11.39 13.69 −2.76 41.84 0.00
3 12.35 9.69 13.52 12.65 8.38 11.90 13.91 12.48 11.24 11.67 4.59 8.00 11.48 10.17 13.57 −8.89 51.43 0.00
4 10.69 10.97 11.98 13.50 9.65 13.08 13.19 11.36 12.83 7.45 2.14 4.30 11.36 12.31 9.01 5.06 39.13 0.00
5 11.78 10.75 13.36 15.25 8.90 13.14 14.74 11.95 12.78 19.66 7.00 4.42 11.24 11.68 13.25 −7.97 43.32 0.00
6 13.33 13.56 15.13 16.02 12.18 13.59 14.12 13.92 14.44 10.69 9.22 6.16 9.88 11.44 11.57 −9.21 47.61 0.00
7 16.90 16.87 13.90 17.81 12.44 14.92 14.58 10.72 15.46 11.56 8.97 23.61 12.66 11.39 12.30 −7.81 64.78 0.00
8 18.53 18.50 13.89 21.46 17.66 16.42 17.02 15.28 14.19 13.67 14.50 14.70 17.13 12.08 15.01 −16.47 63.39 0.00
9 16.96 19.39 19.12 21.93 18.54 17.11 17.78 15.29 17.46 12.28 18.72 27.20 12.86 14.60 15.91 −22.57 54.07 0.00
High 31.01 33.52 24.20 36.09 31.81 24.56 24.30 24.45 23.77 27.09 28.06 33.06 23.04 22.86 18.02 −31.07 50.34 −10.94
H–L 20.57** 25.06** 11.61** 25.44** 23.52** 11.53** 13.77** 12.80* 13.11** 14.83** 14.94** 19.84** 10.46* 12.33** 4.77 −47.32 36.55 −25.68
MR Test
(p-value) 0.16 0.01 0.35 0.00 0.05 0.31 0.03 0.96 0.04 0.99 0.25 − 0.47 0.06 0.43 1.00 0.87 −

Panel B: Sharpe Ratios
Lasso Enet RF XGBoost NN2 NN5

6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y
Low 0.44 0.34 0.48 0.45 0.33 0.50 0.43 0.42 0.44 0.51 0.54 0.56 0.49 0.39 0.48 0.71 0.63 0.65
2 0.46 0.46 0.48 0.60 0.33 0.46 0.52 0.55 0.42 0.67 0.31 0.77 0.39 0.46 0.53 −0.12 1.94 0.00
3 0.63 0.50 0.68 0.64 0.43 0.59 0.59 0.51 0.53 0.51 0.20 0.30 0.47 0.43 0.57 −0.38 1.95 0.00
4 0.55 0.57 0.62 0.71 0.50 0.66 0.63 0.52 0.57 0.35 0.10 0.22 0.48 0.55 0.37 0.19 1.69 0.00
5 0.62 0.57 0.63 0.79 0.45 0.65 0.69 0.56 0.60 0.85 0.34 0.18 0.49 0.54 0.56 −0.34 1.79 0.00
6 0.62 0.67 0.72 0.78 0.60 0.63 0.66 0.66 0.66 0.46 0.50 0.29 0.42 0.52 0.50 −0.40 1.73 0.00
7 0.76 0.79 0.62 0.79 0.60 0.68 0.63 0.49 0.65 0.54 0.37 0.79 0.54 0.51 0.54 −0.27 2.16 0.00
8 0.74 0.76 0.62 0.85 0.75 0.73 0.72 0.60 0.59 0.50 0.59 0.58 0.68 0.53 0.64 −0.61 1.80 0.00
9 0.63 0.74 0.82 0.80 0.72 0.74 0.65 0.59 0.64 0.46 0.62 0.90 0.47 0.61 0.65 −0.83 1.72 0.00
High 0.76 0.98 0.82 0.90 0.96 0.85 0.72 0.75 0.70 0.77 0.79 0.83 0.72 0.79 0.59 −0.69 1.46 −0.41
H–L 0.73 1.14 0.77 0.79 1.19 0.74 0.58 0.50 0.57 0.71 0.80 0.71 0.65 0.67 0.27 −0.92 0.70 −1.19
MR Test
(p-value) 0.60 0.56 0.90 0.21 0.02 0.34 0.79 0.67 0.72 0.81 0.17 − 0.64 0.46 0.37 0.93 0.87 −

36

5.5 Efficient Grid Search

Many studies support the use of efficient algorithms such as hyperband for hyperparameter

optimization. However, the performance of these algorithms is significantly influenced by

the initial grid of hyperparameters. We next examine whether an efficient search algorithm

applied to a wide grid is sufficient.

Specifically, to evaluate the implications of the choice of grid for the initial hyperparam-

eters on out-of-sample predictive accuracy, we use Optuna (Akiba et al., 2019) to efficiently

search across the hyperparameter grids. Optuna is an open-source hyperparameter opti-

mization framework designed for machine learning applications. Given the computational

intensity of exploring all possible hyperparameters, Optuna efficiently searches the hyper-

parameter grid leading to a near-optimal solution. As for all other methods, a search space

needs to be specified for the hyperparameters to initiate the optimization process.

Optuna uses the Tree-structured Parzen Estimator (TPE) to facilitate this exploration

by estimating the likelihood that a given set of hyperparameters will improve performance.

TPE separates the set of hyperparameters into two groups: the best-performing set and the

remaining set. Leveraging this partition, TPE prioritizes areas of the search space expected

to produce superior outcomes. A key efficiency feature of Optuna is its pruning mechanism

which conservatively allocates computational resources by discontinuing trials that perform

significantly worse than the current best trial at earlier checkpoints. Moreover, Optuna can

dynamically adjust the hyperparameter search space in response to insights gained from

completed trials. This adaptability focuses the search on the most promising region of

hyperparameters, enhancing the likelihood of finding the (near-)optimal hyperparameter

configurations with minimal computational costs.30

Table 6 shows the out-of-sample performance of various grids for Extreme Gradient Boost-

ing and Neural Networks with 2 and 5 hidden layers. As expected, the baseline results are

similar to our results in Table 3 as Optuna conducts an efficient grid search. The out-of-

sample performance depends on the initial grid that is chosen for the validation, regardless

of the validation period. Thus, choosing a wide hyperparameter grid does not guarantee
30The combination of XGBoost and Optuna is often used in Kaggle forecasting competitions (see, e.g.,

Filho, 2023), and recently also by Coulombe et al. (2023).

37

Table 6: Performance statistics for the validated models using Optuna

We report the monthly R2
OoS in percentage, and the corresponding Diebold-Mariano (DM) statistic for the

validated models with different validation periods, where the MSE is used as the evaluation metric, and for
different initial grids. Here, e.s. refers to early stopping, which is based on the same period as the validation
procedure. Results are based on 100 trials.

Extreme Gradient Boosting (e.s.) Neural Networks H = 2 (e.s.)
6 months 2 years 10 years 6 months 2 years 10 years

Grid DM R2
OoS DM R2

OoS DM R2
OoS DM R2

OoS DM R2
OoS DM R2

OoS

Wide -1.911 -0.834 1.134 0.304 0.677 0.159 -3.871 -3.001 -2.028 -0.818 1.080 0.245
Baseline -0.403 -0.161 0.641 0.227 0.774 0.217 -3.430 -3.566 -1.722 -0.607 0.947 0.226
Restricted 1.454 0.410 1.653 0.454 0.708 0.188 0.165 0.015 0.575 0.174 1.239 0.287

Neural Networks H = 5 (e.s.)
6 months 2 years 10 years

Grid DM R2
OoS DM R2

OoS DM R2
OoS

Wide 3.619 -3.198 -1.747 -0.609 1.133 0.266
Baseline -3.358 -1.991 -1.901 -0.672 1.047 0.240
Restricted -0.119 -0.045 0.252 0.077 1.226 0.291

Note: “Baseline” refers to the initial search grids stated in Table 2. For XGBoost, “Wide” refers to the initial grid of B = 1000, D ∈ [1, 12],
η ∈ [0.0001, 0.7], α ∈ [0, 0.5], λ ∈ [0, 1], both sub sample and column sample between [0, 1], and L(·) ∈ {MSE, Huber}, and “Restricted” to
B = 1000, D ∈ [1, 2], η ∈ [0.0001, 0.1], all with early stopping and a patience of 5. For NN2 and NN5, wide refers to η ∈ [0.00001, 0.1],
α ∈ [0.0001, 0.1], ℓ2 ∈ [0.0001, 0.1], f(·) ∈ {Leaky, ReLu, Sigmoid, linear, Tanh, Softmax}, L(·) ∈ {MSE, Huber}, dropout ∈ {0, 0.1, 0.2, 0.5},
batch size ∈ {2000, 10000, none}, and “Restricted” to η ∈ [0.0001, 0.001], α ∈ [0.0001, 0.01], f(·) ∈ {Leaky, ReLu}, L(·) ∈ {MSE, Huber}.

good forecasting performance and, in fact, the chosen initial grid fed to Optuna for every

validation period critically affects forecasting performance.

6 Conclusion

Machine learning models such as random forests, gradient boosted trees, and neural networks,

have shown considerable promise in empirical asset pricing studies. This capacity, however,

comes with the challenge of managing a broad array of hyperparameters—from the number

of hidden layers in neural networks to the depth of trees in random forests—each impacting

model performance. These hyperparameters determine the ML models’ basic architecture

and how they regulate the bias-variance trade-off that is key to forecasting performance

especially for variables as noisy as stock returns.

The risk of overfitting and spurious forecasting performance is not particular to ML

methods and has been a constant theme in evaluating the forecasting performance even

38

of linear models. However, ML methods display a degree of flexibility that significantly

heightens this danger. Our empirical analysis analysis shows that the distribution of out-

of-sample forecasting performance is much wider and highly left-skewed for ML methods

compared to linear models. Risk related to model misspecification and parameter estimation

error is, thus, notably elevated for flexible ML models that attempt to account for nonlinear

dynamics and complex interaction terms. This flexibility can come at the cost of enhanced

sensitivity to noisy data and outliers.

Our extensive analysis of the importance of hyperparameters for ML models’ forecasting

performance shows that there is a (”guaranteed success”) range of values for a subset of

one or two hyperparameters which results in impressive out-of-sample forecasting perfor-

mance regardless of how the other hyperparameters are chosen. Conversely, there is also a

(”lost cause”) range of values for a subset of hyperparameters for which poor out-of-sample

forecasting performance occurs regardless of how the other hyperparameters are chosen.

Importantly, time-series validation schemes which use data-driven methods to choose

the optimal combination of hyperparameters do not provide a definitive solution to the

dependence of forecasting performance on the chosen hyperparameters. Validation methods

themselves depend on features such as the choice of validation window and the grid of hyper

parameter values included in the search and these choices tend to have important effects on

forecasting performance.

Our results highlight that the current lack of guidelines for setting the range of values

examined for the hyperparameters heightens the risk of false inference in asset pricing studies

based on out-of-sample forecasting performance. At a minimum, an implication of our

findings is that empirical studies should carefully document the range of hyperparameters

being considered along with details of any validation schemes being used.

39

References
Akiba, T., S. Sano, T. Yanase, T. Ohta, and M. Koyama (2019). Optuna: A next-generation

hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pp. 2623–2631.

Amari, S., N. Murata, K.-R. Müller, M. Finke, and H. Yang (1995). Statistical theory of
overtraining—is cross-validation asymptotically effective? Advances in Neural Information
Processing Systems 8.

Avramov, D., S. Cheng, and L. Metzker (2023). Machine learning vs. economic restrictions:
Evidence from stock return predictability. Management Science 69 (5), 2587–2619.

Bali, T. G., H. Beckmeyer, M. Moerke, and F. Weigert (2023). Option return predictability
with machine learning and big data. Review of Financial Studies 36 (9), 3548–3602.

Bergstra, J. and Y. Bengio (2012). Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13 (2), 282–305.

Bianchi, D., M. Büchner, and A. Tamoni (2021). Bond risk premiums with machine learning.
Review of Financial Studies 34 (2), 1046–1089.

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification and
Regression Trees. CRC Press.

Bryzgalova, S., S. Lerner, M. Lettau, and M. Pelger (2024). Missing financial data. Review
of Financial Studies (forthcoming) hhae036, 1–54.

Campbell, J. Y. and S. B. Thompson (2008). Predicting excess stock returns out of sample:
Can anything beat the historical average? Review of Financial Studies 21 (4), 1509–1531.

Cao, S., W. Jiang, J. Wang, and B. Yang (2024). From man vs. machine to man + machine:
The art and AI of stock analyses. Journal of Financial Economics 160, 103910.

Chen, L., M. Pelger, and J. Zhu (2024). Deep learning in asset pricing. Management
Science 70 (2), 714–750.

Chen, T. and C. Guestrin (2016). XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 785–794.

Coulombe, P. G., M. Leroux, D. Stevanovic, and S. Surprenant (2022). How is machine
learning useful for macroeconomic forecasting? Journal of Applied Econometrics 37 (5),
920–964.

Coulombe, P. G., D. E. Rapach, E. C. M. Schütte, and S. Schwenk-Nebbe (2023). The
anatomy of machine learning-based portfolio performance. Working Paper.

40

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems 2 (4), 303–314.

Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business
& Economic Statistics 13 (3), 253–263.

Filho, M. (2023). Xgboost hyperparameter tuning with optuna. https://forecastegy.co
m/posts/xgboost-hyperparameter-tuning-with-optuna/. Accessed on: October 8,
2023.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29 (5), 1189–1232.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings.

Green, J., J. R. Hand, and X. F. Zhang (2017). The characteristics that provide independent
information about average US monthly stock returns. Review of Financial Studies 30 (12),
4389–4436.

Gu, S., B. Kelly, and D. Xiu (2020). Empirical asset pricing via machine learning. Review
of Financial Studies 33 (5), 2223–2273.

Gu, S., B. Kelly, and D. Xiu (2021). Autoencoder asset pricing models. Journal of Econo-
metrics 222 (1), 429–450.

Han, Y., A. He, D. Rapach, and G. Zhou (2023). Cross-sectional expected returns: New
Fama-MacBeth regressions in the era of machine learning. Working paper.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are
universal approximators. Neural Networks 2 (5), 359–366.

Jiang, J., B. Kelly, and D. Xiu (2023). (re-)imag(in)ing price trends. Journal of Fi-
nance 78 (6), 3193–3249.

Kelly, B., D. Xiu, et al. (2023). Financial machine learning. Foundations and Trends® in
Finance 13 (3-4), 205–363.

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition. In Doklady Akademii
Nauk, Volume 114, pp. 953–956. Russian Academy of Sciences.

Masini, R. P., M. C. Medeiros, and E. F. Mendes (2023). Machine learning advances for
time series forecasting. Journal of Economic Surveys 37 (1), 76–111.

41

https://forecastegy.com/posts/xgboost-hyperparameter-tuning-with-optuna/
https://forecastegy.com/posts/xgboost-hyperparameter-tuning-with-optuna/

Menkveld, A. J., A. Dreber, F. Holzmeister, J. Huber, M. Johannesson, M. Kirchler,
S. Neusüss, M. Razen, U. Weitzel, D. Abad-Dı́az, et al. (2024). Nonstandard errors.
Journal of Finance 79 (3), 2339–2390.

Patton, A. J. and A. Timmermann (2010). Monotonicity in asset returns: New tests with
applications to the term structure, the CAPM, and portfolio sorts. Journal of Financial
Economics 98 (3), 605–625.

Prechelt, L. (2002). Early stopping-but when? In Neural Networks: Tricks of the trade, pp.
55–69. Springer.

Probst, P., M. N. Wright, and A.-L. Boulesteix (2019). Hyperparameters and tuning strate-
gies for random forest. WIREs Data Mining Knowl Discov 9, e1301.

Shen, Z. and D. Xiu (2024). Can machines learn weak signals? Working Paper.

Van Binsbergen, J. H., X. Han, and A. Lopez-Lira (2023). Man versus machine learning:
The term structure of earnings expectations and conditional biases. Review of Financial
Studies 36 (6), 2361–2396.

Wolff, D. and U. Neugebauer (2019). Tree-based machine learning approaches for equity
market predictions. Journal of Asset Management 20 (4), 273–288.

42

Appendix for

“Overhyped? Can ML Models Reliably
Predict Stock Returns?”

S. Yanki Kalfa, Allan Timmermann, Terri van der Zwan

This supplementary material for “Overhyped? Can ML Models Reliably Predict Stock
Returns?” complements the paper with details on the data and additional empirical results.

A Data

Table A.1 reports details on the firm characteristics used in our paper. Table A.2 presents
the categorization of our dataset based on the Standard Industry Classification system used
to generate industry dummies. For each grey block in the table, a separate dummy is
constructed, generating a total of 48 distinct dummy variables.

Table A.1: Details of the 92 firm characteristics

No. Acronym Firm characteristic description Update frequency

1 absacc Absolute accruals Annual
2 acc Working capital accruals Annual
3 aeavol Abnormal earnings announcement volume Quarterly
4 age No. of years since first Compustat coverage Annual
5 agr Asset growth Annual
6 baspread Bid-ask spread Monthly
7 beta Market beta Monthly
8 betasq Market beta squared Monthly
9 bm Book-to-market Annual
10 bm ia Industry-adjusted book to market Annual
11 cash Cash holdings Quarterly
12 cashdebt Cash flow to debt Annual
13 cashpr Cash productivity Annual
14 cfp Cash flow to price ratio Annual
15 cfp ia Industry-adjusted cash flow to price ratio Annual
16 chatoia Industry-adjusted change in asset turnover Annual
17 chcsho Change in shares outstanding Annual
18 chempia Industry-adjusted change in employees Annual
19 chinv Change in inventory Annual
20 chmom Change in 6-month momentum Monthly
21 chpmia Industry-adjusted change in profit margin Annual
22 chtx Change in tax expense Quarterly
23 cinvest Corporate investment Quarterly
24 convind Convertible debt indicator Annual
25 currat Current ratio Annual
26 depr Depreciation / PP&E Annual
27 divi Dividend initiation Annual
28 divo Dividend omission Annual
29 dolvol Dollar trading volume Monthly
30 dy Dividend to price Annual

43

Table A.1—continued

No. Acronym Firm characteristic description Update frequency

31 ear Earnings announcement return Quarterly
32 egr Growth in common shareholder equity Annual
33 ep Earnings to price Annual
34 gma Gross profitability Annual
35 grcapx Growth in capital expenditures Annual
36 grltnoa Growth in long term net operating assets Annual
37 herf Industry sales concentration Annual
38 hire Employee growth rate Annual
39 idiovol Idiosyncratic return volatility Monthly
40 ill Illiquidity Monthly
41 indmom Industry momentum Monthly
42 invest Capital expenditures and inventory Annual
43 lev Leverage Annual
44 lgr Growth in long-term debt Annual
45 maxret Maximum daily return Monthly
46 mom12m 12-month momentum Monthly
47 mom1m 1-month momentum Monthly
48 mom36m 36-month momentum Monthly
49 mom6m 6-month momentum Monthly
50 ms Financial statement score Quarterly
51 mvel1 Size, market capitalization Monthly
52 mve ia Industry-adjusted size Annual
53 nincr Number of earnings increases Quarterly
54 operprof Operating profitability Annual
55 orgcap Organizational capital Annual
56 pchcapx ia Industry adjusted % change in capital expenditures Annual
57 pchcurrat % change in current ratio Annual
58 pchdepr % change in depreciation Annual
59 pchgm pchsale % change in gross margin − % change in sales Annual
60 pchquick % change in quick ratio Annual
61 pchsale pchinvt % change in sales − % change in inventory Annual
62 pchsale pchrect % change in sales − % change in A/R Annual
63 pchsale pchxsga % change in sales − % change in SG&A Annual
64 pchsaleinv % change sales-to-inventory Annual
65 pctacc Percent accruals Annual
66 pricedelay Price delay Monthly
67 ps Financial statements score Annual
68 quick Quick ratio Annual
69 rd R&D increase Annual
70 rd mve R&D to market capitalization Annual
71 rd sale R&D to sales Annual
72 retvol Return volatility Monthly
73 roaq Return on assets Quarterly
74 roavol Earnings volatility Quarterly
75 roeq Return on equity Quarterly
76 roic Return on invested capital Annual
77 rsup Revenue surprise Quarterly
78 salecash Sales to cash Annual
79 saleinv Sales to inventory Annual
80 salerec Sales to receivables Annual
81 securedind Secured debt indicator Annual
82 sgr Sales growth Annual
83 sin Sin stocks (smoke, tobacco, beer, alcohol, or gaming) Annual
84 sp Sales to price Annual
85 std dolvol Volatility of liquidity (dollar trading volume) Monthly
86 std turn Volatility of liquidity (share turnover) Monthly
87 stdacc Accrual volatility Quarterly
88 stdcf Cash flow volatility Quarterly
89 tang Debt capacity/firm tangibility Annual
90 tb Tax income to book income Annual
91 turn Share turnover Monthly
92 zerotrade Zero trading days Monthly

Note: 2 characteristics of Gu et al. (2020) are not considered; realestate and secured, no. 72, 82 in their paper,
respectively. For the authors and journals corresponding to the anomalies, see Green et al. (2017).

44

Table A.2: Grouping of Standard Industry Classification codes

SIC2 digits Industry

1 Agriculture, Forestry, and Fishing
2 Mining
7 Construction
10 Manufacturing
12 Transportation, Communications, Electric, Gas, and Sanitary Services
13 Wholesale Trade
14 Retail Trade
15 Eating and Drinking Places
16 Miscellaneous Retail
17 Finance, Insurance, and Real Estate
20 Services
21 Miscellaneous Services
22 Public Administration
23 Non-Classifiable Establishments
24 Educational Services
25 Health Services
26 Legal Services
27 Engineering, Accounting, Research, Management, and Related Services
28 Agricultural Services
29 Miscellaneous Services
30 Apparel and Other Finished Products Made From Fabrics and Similar Materials
31 Leather and Leather Products
32 Stone, Clay, Glass, and Concrete Products
33 Primary Metal Industries
34 Fabricated Metal Products, Except Machinery and Transportation Equipment
35 Industrial and Commercial Machinery and Computer Equipment
36 Electronic and Other Electrical Equipment and Components, Except Computer Equipment
37 Transportation Equipment
38 Instruments and Related Products
39 Miscellaneous Manufacturing Industries
40 Railroad Transportation
42 Motor Freight Transportation and Warehousing
44 Water Transportation
45 Transportation by Air
46 Pipelines, Except Natural Gas
47 Transportation Services
48 Communications
49 Electric, Gas, and Sanitary Services
50 Wholesale Trade-Durable Goods
51 Wholesale Trade-Non-Durable Goods
52 Building Materials, Hardware, Garden Supply, and Mobile Home Dealers
53 General Merchandise Stores
54 Food Stores
55 Automotive Dealers and Gasoline Service Stations
56 Apparel and Accessory Stores
57 Home Furniture, Furnishings, and Equipment Stores
58 Eating and Drinking Places
59 Miscellaneous Retail Stores
60 Depository Institutions
61 Non-depository Credit Institutions
62 Security and Commodity Brokers, Dealers, Exchanges, and Services
63 Insurance Carriers
64 Insurance Agents, Brokers, and Service
65 Real Estate
67 Holding and Other Investment Offices
70 Hotels, Rooming Houses, Camps, and Other Lodging Places
72 Personal Services
73 Business Services
75 Automotive Repair, Services, and Parking
76 Miscellaneous Repair Services
78 Motion Pictures
79 Amusement and Recreation Services
80 Health Services
82 Educational Services
83 Social Services
87 Engineering, Accounting, Research, Management, and Related Services
99 Non-Classifiable Establishments

Note: Rows that are marked grey are grouped.

45

B Details of the Algorithms

Algorithm 1 shows the early stopping procedure. Early stopping is used by extreme gradient
boosting and neural networks.

Algorithm 1 Early Stopping
Require: Patience parameter ρ and initial model parameters θM .

Set prediction error e =∞, and counter p = 0.
while p < ρ do

Obtain parameters θ̂m from ML procedure.
Calculate prediction error ê in the validation sample.
if ê < e then

p← 0 ▷ Reset counter
e← ê ▷ Update prediction error
θM ← θ̂M ▷ Update model parameters

else
p← p + 1 ▷ Update counter

end if
end while
return θM ▷ Resulting model parameter

Algorithm 2 below shows the Adam optimizer with ω containing both the weights and biases
in the neural network.

Algorithm 2 Adam Optimizer
Require: Learning rate η, exponential decay rates β1, β2, objective function L(ω), and initial

parameter vector ω0.
Set first moment m0 = 0, second moment v0 = 0, and step size d = 0.
while ωd not converged do

d← d + 1
gd ← ∇ωLd(ωd−1)
md ← β1 ·md−1 + (1− β1) · gd ▷ Update biased first moment
vd ← β2vd−1 + (1− β2)g2

d ▷ Update biased second moment
m̂d ← md/(1− βd

1) ▷ Bias corrected first moment
v̂d ← vd/(1− βd

2) ▷ Bias corrected second moment
ωd ← ωd−1 − η · m̂d/(

√
v̂d + ϵ) ▷ Update parameters

end while
return ωd ▷ Resulting parameter

In the standard implementation of Optuna, hyperparameters for models like XGBoost and
neural networks are typically assigned uniform priors. However, our grid search results
indicate that overly aggressive settings for certain hyperparameters, such as a high learning
rate and maximum depth for XGBoost, lead to performance degradation. To address this,

46

we propose using non-uniform priors over the hyperparameter space—specifically, a mixture
of two normal distributions, N (µ1, Σ1) and N (µ2, Σ2). Since hyperparameters cannot take
negative values, we apply an ad hoc non-negativity constraint during sampling. Figure B.1
shows the empirical distributions we sample the initial hyperparameters from. Algorithm
3 shows this specific sampling procedure. We use this approach for XGBoost and neural
networks. For XGBoost we consider a mixture of distributions on the learning rate η and
the maximum depth D, with prior mean and variances

µ1 =
0.1

4

 , µ2 =
0.4

1

 and Σ1 = Σ2 =
0.005 0

0 1

 . (B.1)

We then ensure that D is an integer by taking the ceiling of a generated variable.
For neural networks we consider mixture of distributions on the adam learning rate η

and the l1-shrinkage α, with prior mean and variances

µ1 =
0.05

0.2

 , µ2 =
 0.3

0.001

 and Σ1 = Σ2 =
0.003 0

0 0.003

 . (B.2)

Figure B.1: Empirical Distribution of the Priors used by Optuna

The figure displays the empirical distributions of the hyperparameter combinations Optuna is sampling from.
The distributions are mixtures of two, highlighted by the two colors. Panel (a) shows the Extreme Gradient
Boosting hyperparameters while Panel (b) shows the Neural Networks’ hyperparameters.

(a) Extreme Gradient Boosting

0.0 0.1 0.2 0.3 0.4 0.5 0.6
η

0

2

4

6

8

D

(b) Neural Networks

0.0 0.1 0.2 0.3 0.4 0.5
η

0.0

0.1

0.2

0.3

0.4

α

47

Algorithm 3 Sampling from a Mixture of Distributions with Rejection
Require: Mean vectors µ1, µ2, covariance matrices Σ1, Σ2 for model m.

Set B = 5, 000 as the number of samples to draw.
Initialize empty set S for accepted samples.
while |S| < B do

Draw v ∼ Uniform(0, 1).
if v < 0.5 then

Sample x ∼ N (µ1, Σ1).
else

Sample x ∼ N (µ2, Σ2).
end if
if x1, x2 > 0 then

if Model m is XGBoost then
x2 ← ceil(x2) ▷ Make max. depth D an integer

end if
Add x to S ▷ Accept if both components are non-negative

else
Reject x ▷ Reject the sample if any component is negative

end if
end while
return S ▷ Return the set of accepted samples

C Additional Empirical Results

C.1 Dynamic Adjustments in the Selected Hyperparameters

To gain insight into how the validation method adapts to the data over time, Figure C.2
shows the sequence of hyperparameter values selected over time for the Lasso, Elastic Net,
Random Forest, XGBoost, and Neural Networks with 2 and 5 hidden layers. In each figure,
the shaded areas represent the full grid available for hyperparameter selection.

For the Lasso approach, panel (a), the hyperparameter α generally falls below 0.01. Ap-
proximately 5% of the regression coefficients (β) remain non-zero in most windows, equating
to seven distinct features. When α = 0.012, the model produces zero predictions. Further-
more, the validated models select a maximum of 18 features, highlighting the amount of
shrinkage used.

For the Elastic Net approach, panel (b), the range of validated hyperparameter values is
wider with a maximum of α = 0.015 while λ fluctuates over the full range between 0.2 and
0.8. Moreover, values for the two hyperparameters are negatively correlated so that when λ

is high, α tends to be low. When the model selects fewer predictors (high α), it applies less
shrinkage of their coefficients while larger models require more shrinkage of the individual

48

coefficients.
Panel (c) shows the sequence of hyperparameter values selected by the validation proce-

dure applied to the Random Forest. The number of trees (B∗) varies, and there is often a
trade-off between the depth and number of features, meaning that when D∗ is high, F ∗ is
often low and vice versa.

For XGBoost, panel (d), the validation procedure tends to favor larger learning rates,
leading to overfitting as shown in Table 3. However, the validation procedure tends to pick
shallow trees with a depth (D∗ = 2). Combined with the learning rate η∗, the XGBoost
prefers relatively large learning rates with shallow trees to guard against over-fitting.

Panels (e) and (f) show the sequence of the selected hyperparameters for the neural
networks. For each architecture, the selected hyperparameters are displayed as the median
over the five neural networks with distinct random seeds. A small learning rate, η, between
0.0001 and 0.001, is usually chosen. This pattern does not apply uniformly across models
validated on the test set, however. The chosen learning rate, η∗, can vary a great deal and
sometimes a higher rate of 0.01 is preferred. For the 2-year validation period the network
weights require less shrinkage as indicated by a lower α value. Typically, a higher level of
shrinkage is associated with a reduced learning rate. This relationship suggests a trade-off
between the rate of learning and the degree of regularization applied to the model, with
adjustments to one parameter potentially necessitating compensatory changes to another.

49

Figure C.2: Sequence of hyperparameters selected by the validated models

The Figure displays the sequence of hyperparameters chosen based on a 2-year validation period. The models
are refitted every 12 months which explains the steps. Shaded regions in the figure represent the conventional
grids for hyperparameter selection.

(a) Lasso

2000 2004 2008 2012 2016 2020
0.000

0.005

0.010

0.015

α∗

(b) Elastic Net

0.000
0.005
0.010
0.015

α∗

2000 2004 2008 2012 2016 2020
0.2
0.4
0.6
0.8

λ∗

(c) Random Forest

0

200

400

600

B∗

2
4
6
8

D∗

2000 2004 2008 2012 2016 2020
0

15
30
45
60
75

F ∗

(d) XGBoost (e.s.)

0

200

400

600

B∗

2
4
6
8

D∗

2000 2004 2008 2012 2016 2020
0.0
0.1
0.2
0.3
0.4

η∗

(e) NN2 (e.s.)

0.00

0.05

0.10
α∗

2000 2004 2008 2012 2016 2020
0.00

0.05

0.10
η∗

(f) NN5 (e.s.)

0.00

0.05

0.10
α∗

2000 2004 2008 2012 2016 2020
0.00

0.05

0.10
η∗

C.2 Correlations between Predictions across Validated Models

Table C.1 shows average stock-level correlation between return predictions from the individ-
ual validated model using 6-month, 2-year and 10-year validation sets. In general, correla-
tions tend to be quite low both when comparing return predictions from different models
as well as return predictions generated by a particular model but using different validation
sets.

50

Table C.1: Correlations between predictions across validated models

Lasso Elastic Net Random Forest XGBoost NN2 NN5
6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y 6m 2y 10y

Lasso 6m 1.00 0.64 0.50 0.90 0.63 0.49 0.42 0.42 0.42 0.19 0.25 0.19 0.57 0.48 0.31 0.50 0.36 0.30
2y 0.64 1.00 0.42 0.74 0.95 0.46 0.34 0.33 0.39 0.12 0.17 0.12 0.45 0.64 0.27 0.38 0.39 0.17
10y 0.50 0.42 1.00 0.55 0.54 0.96 0.35 0.36 0.42 0.22 0.29 0.31 0.30 0.36 0.55 0.24 0.17 0.17

Enet 6m 0.90 0.74 0.55 1.00 0.74 0.58 0.46 0.43 0.45 0.21 0.28 0.18 0.60 0.53 0.34 0.51 0.35 0.28
2y 0.63 0.95 0.54 0.74 1.00 0.57 0.37 0.38 0.44 0.15 0.21 0.15 0.48 0.66 0.32 0.41 0.38 0.17
10y 0.49 0.46 0.96 0.58 0.57 1.00 0.39 0.36 0.47 0.26 0.33 0.35 0.30 0.37 0.57 0.24 0.18 0.18

RF 6m 0.42 0.34 0.35 0.46 0.37 0.39 1.00 0.70 0.56 0.48 0.44 0.39 0.38 0.33 0.23 0.35 0.27 0.19
2y 0.42 0.33 0.36 0.43 0.38 0.36 0.70 1.00 0.53 0.38 0.45 0.43 0.35 0.35 0.16 0.34 0.30 0.17
10y 0.42 0.39 0.42 0.45 0.44 0.47 0.56 0.53 1.00 0.38 0.41 0.46 0.42 0.40 0.20 0.42 0.37 0.27

XGBR 6m 0.19 0.12 0.22 0.21 0.15 0.26 0.48 0.38 0.38 1.00 0.55 0.29 0.09 0.05 0.17 0.05 -0.03 0.08
2y 0.25 0.17 0.29 0.28 0.21 0.33 0.44 0.45 0.41 0.55 1.00 0.32 0.09 0.08 0.17 0.06 -0.04 0.11
10y 0.19 0.12 0.31 0.18 0.15 0.35 0.39 0.43 0.46 0.29 0.32 1.00 0.12 0.18 0.15 0.12 0.14 0.03

NN2 6m 0.57 0.45 0.30 0.60 0.48 0.30 0.38 0.35 0.42 0.09 0.09 0.12 1.00 0.57 0.09 0.96 0.59 0.16
2y 0.48 0.64 0.36 0.53 0.66 0.37 0.33 0.35 0.40 0.05 0.08 0.18 0.57 1.00 0.22 0.52 0.78 0.37
10y 0.31 0.27 0.55 0.34 0.32 0.57 0.23 0.16 0.20 0.17 0.17 0.15 0.09 0.22 1.00 0.03 0.06 0.27

NN5 6m 0.50 0.38 0.24 0.51 0.41 0.24 0.35 0.34 0.42 0.05 0.06 0.12 0.96 0.52 0.03 1.00 0.64 0.20
2y 0.36 0.39 0.17 0.35 0.38 0.18 0.27 0.30 0.37 -0.03 -0.04 0.14 0.59 0.78 0.06 0.64 1.00 0.46
10y 0.30 0.17 0.17 0.28 0.17 0.18 0.19 0.17 0.27 0.08 0.11 0.03 0.16 0.37 0.27 0.20 0.46 1.00

Note: The average over the time series correlations between predictions from different models for each firm with over 60 observations in the test sample.

C.3 Evolution in Forecasting Performance for the Linear Models

Figure C.3 shows the cumulative sum of squared error differentials for the linear models
across different validation windows. For these linear models, a shorter validation periods
helps mitigate downturns during crises.

Figure C.3: Cumulative sum of squared error differentials

This figure displays the Cumulative Sum of Squared Error Differentials (CSSED) for validated linear Lasso
and Elastic Net models compared to a zero prediction benchmark. The data covers the sample period from
1997 to 2021. Grey shaded areas correspond to NBER recession periods.

2000 2004 2008 2012 2016 2020

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

C
S

S
E

D

Lasso: 6m val.

Enet: 6m val.

Lasso: 2y val.

Enet: 2y val.

Lasso: 10y val.

Enet: 10y val.

51

	Introduction
	Methodology
	The Modeling Problem
	Hyperparameters
	Linear Models
	Tree-based Models
	Random Forest
	Extreme Gradient Boosting

	Neural Networks
	Summary of Hyperparameter Ranges

	Data
	Missing Characteristics and Data Transformations
	Training and Test Set
	Evaluation of Forecasts

	Results
	Linear Models
	Tree-based Models
	Neural Networks
	Summary of Results

	Validation
	Validation Analysis and Results
	Breakdown in Forecasting Performance
	Cross-sectional Variation in Predictive Accuracy
	Economic Value of Return Forecasts
	Efficient Grid Search

	Conclusion
	Data
	Details of the Algorithms
	Additional Empirical Results
	Dynamic Adjustments in the Selected Hyperparameters
	Correlations between Predictions across Validated Models
	Evolution in Forecasting Performance for the Linear Models

