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Recap of Univariate Models

ARMA models require stationarity for stability

We can check for unit roots using ADF tests

The AR component of the ARMA allows us to forecast well into the
future using the chain rule

MA forecast become zero after the qth order

Forecasting financial time series is difficult

We can select the lag length of the ARMA using Information
Criterion: AIC or BIC
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Multivariate ARMA: ARMAX

What if we need more than just the history of the variable

We can augment our ARIMA model with exogenous regressors

Some examples:

Fama-French 3 factor model
Inflation
GDP
Stock Prices
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ARMAX: Formulation

Formulation of the ARMAX is very simple:

yt = α +
P∑

p=1

φpyt−p + βXt−1 + εt +
Q∑

q=1

θqεt−q

Where Xt−1 is a vector of exogenous variables, and β is vector of
coefficients.
The above formulation is an ARMAX(P,Q).
We assume stationarity.
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ARMAX: Pros and Cons

Pros:

Allows for additional regressors
In most cases augmenting the ARMA is useful
It is linear, easy to explain
You can forecast with it

Cons:

Can get very large
Can only forecast 1 step ahead
You may need to try direct forecasting for more than 1 step ahead
Need to have exogenous variables to be stationary
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ARMAX: Forecasting

Forecasting with the ARMAX is simple and follows directly from ARMA.
Let’s focus on the simple example of stationary ARMAX(2,2) with 1
exogenous variable.

Suppose the true model is given by:

yT+1 = α + φ1yT + φ2yT−1 + βxT + εT+1 + θ1εT + θ2εT−1

The forecast follows directly:

yT+1|T = α + φ1yT + φ2yT−1 + βxT + θ1εT + θ2εT−1

The MSE of the forecast:

E[(yT+1 − yT+1|T )2] = E[ε2T ] = 1, for ε ∼WN(0, 1)
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ARMAX: Forecasting

What if we really want to forecast 2 steps ahead, then:

The true model is given by:

yT+2 = α + φ1yT+1 + φ2yT + βxT+1 + εT+2 + θ1εT+1 + θ2εT

yT+2|T = α + φ1yT+1|T + φ2yT + β xT+1︸ ︷︷ ︸
We do not know this value

+ + θ2εT

We are left with:

yT+2|T = α + φ1yT+1|T + φ2yT + θ2εT =⇒ ARMA Forecast

The forecast is clearly misspecified.
I do not suggest forecasting 2 steps ahead. The time series literature uses
Vector Autoregression (VAR) to get around this problem.
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ARMAX: Solution

So, is ARMAX useless?

No, we can use recursive forecasting

In finance, normally we do not forecast more than 1 period ahead

If you really want to forecast using X , then endogenize it
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ARMAX: Recap

ARMAX allows for exogenous variables

The number of exogenous variables can be large

Estimation error can be very large

ARMAX does not perform model selection

Can only forecast 1 step ahead
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Loss Functions: Introduction

Loss functions show the preference of the policy maker or forecaster’s
cost of forecast errors

Trade-offs between forecast errors are quantified by the loss function

We may prefer overpredicting to underpredicting

So, the cost of negative forecast errors are smaller realtive to positive
forecast errors

Forecasts feed into policy making

Examples:

Central Banks (Inflation, Unemployment, GDP)
IMF
World Bank
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Loss Functions: Notation

Outcome: Y

Information set X

Forecast: f = f (X )

Forecast error: e = Y − f

Loss function: L(f , y)→ R
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How to pick a Loss Function

The main purpose of a Loss Function is to weight the cost of forecast
errors

The choice of Loss Function has an effect on

forecasting models
estimated parameters
forecast comparison
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Assumptions on Loss

There are three main assumptions that a Loss Function needs to satisfy

Assumption

L(0) = 0 : Normalization
L(e) ≥ 0 for |e| > 0 : Imperfect forecasts generate larger loss than perfect
ones.
L(e) is monotonically non-decreasing in |e|

L(e1) ≥ L(e2) if e1 > e2 > 0

L(e1) ≥ L(e2) if e1 < e2 < 0
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Common Loss Functions: MSE

The Mean Squared Error loss function is the most widely used loss
function. Refer to as MSE Loss.

L(f , y) = α(yt − ŷt)
2 | α > 0 (1)

It satisfies Assumptions 1 - 3

It is symmetric

Differentiable everywhere

Convex: large errors are penalized at an increasing rate

ŷ?t = arg
ŷ

minE[(yt − ŷt)
2]

FOC :

ŷ?t = E[yt ]

This aligns perfectly with OLS.
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Common Loss Functions: lin-lin Loss

The Piece-wise linear (lin-lin) loss is a nice way representing different
preferences for underpredicting vs. overpredicting.

L(e) = (1− α)e1e>0 − αe1e≤0 | 0 < α < 1 (2)

e1e>0 =

{
1 for e > 0

0 Otherwise

e1e≤0 =

{
1 for e ≤ 0

0 Otherwise

It satisfies Assumptions 1 - 3

Differentiable everywhere except at zero

Weight on overpredicting: (1− α)

Weight on underpredicting: α

Mean Absolute Error if α = 1/2
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lin-lin Loss: Optimal Forecast

Risk under lin-lin loss is defined as:

EY [L(Y − Ŷ )] = (1− α)E[Y |Y > Ŷ ]− αE[Y |Y ≤ Ŷ ]

FOC :

Ŷ ? = F−1Y (1− α)

Optimal forecast is the (a− α) quantile of Y

If α = 1/2 then the median is the optimal forecast

As α→ 1 overpredicting becomes more costly
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Linex Loss

The linear exponential loss is another assymetric loss function.

L(e) = α1(exp(α2e)− α2e − 1) | α2 6= 0, α1 > 0 (3)

Differentiable everywhere

α2 controls direction and degree of asymmetry

α2 > 0 L(e) is linear for overpredicting and exponential for
underpredicting

underpredictions is more costly than overprediction
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Case for Asymmetric Loss Functions

Decision makers may have different preferences

It is more costly to overpredict GDP than underpredicting

This may not be the case for inflation

If underpredicting is more costly then it might be optimal to
overpredict (negative bias)

If overpredicting is more costly then it might be optimal to
underpredict (positive bias)
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Model Selection: Motivation

Started with ARMA models

Added exogenous variables

Number of exogenous variables can be large

Certain variables could be weak predictors

How de we select the variables we want to include?
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Model Selection: Introduction

We normally have more than 1 model to forecast

The models can vary

Number of lags
Number of predictor variables
Parametric vs. Non-Parametric

The goal is to come up with the best model

There could be models with similar performances

The relationship between y and X can change
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Model Selection: Notation

Let MK be the set of models

Mk ∈MK for k = 1, 2, . . . ,K

Let Xt be the space of predictors

βk is a vector of parameters for Mk

We search over MK to find the best model(s).
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In Sample Fit vs. Forecasting

In all cases larger models that nest smaller models produce better in
sample fit, think of R2.

In general, larger models do not outperform smaller models when we
look at forecasting performance.

We should not be tempted by large complex models when forecasting.
Parsimony is beautiful.

When doing model selection, we need to think of two potential
problems, and their trade-off.

Large complex models may have small misspecification error and large
estimation error

Small models may have large misspecification error (omitted variables,
functional form) but have small estimation error.
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Going from Large to Small Models

How can we go from large to small models

Answer: Machine Learning

Sequential Feature Selection

LASSO

Ridge

Elastic Net
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Going from Large to Small Models

All models listed above start with the kitchen sink models. Meaning they
start with all possible predictors in the feature space.

yt = α +
P∑

p=1

βpxp,t−1 + εt (4)

Sequential Feature Selection uses t-stats to pick the best model. This
could be done either forward or backward

Penalized Regression: augments the loss function by penalty to pick
best variables or shrink the magnitude of the variables

LASSO: L1 penalty
Ridge: L2 penalty
Elastic Net: L1 and L2 combination
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Sequential Feature Selection (SFS)

SFS selects the best subset of regressors to include in the regression

It is done by sequentially testing the coefficients of the variables
included

Widely used in financial forecasting
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SFS- Backward Selection- General to Specific

We start from equation 4

Rank variables by t-scores

Eliminate the variable with the smallest t-score below some threshold

Re-run regression and repeat the process until some threshold is
reached

tmin = min
k=1,...,K

|tβ̂k | < t

A rule of thumb is setting t = 2.

S. Yanki Kalfa (UCSD - Rady SOM) Linear ML June 15, 2022 30 / 40



SFS- Forward Selection- Specific to General

yt+1 = α + εt+1 (5)

We start from equation 5

Test each variable one by one

Rank the variables by t-scores

Add the variable with highest t-score above some threshold

Re-run regression and repeat the process until some threshold is
reached

tmax = max
k=1,...,K

|tβ̂k | > t̄

A rule of thumb is setting t̄ = 2.
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Pros and Cons of SFS

Pros:

Easy to interpret
Easy computation
Simple

Cons:

Selection of variables is path dependent
Cannot search over all possible models
Cannot really control the size of the model
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Penalized Regressions

Up until we considered the MSE Loss (Equation (1))

Is there a way of augmenting the MSE Loss to also achieve model
selection

Yes

LASSO
Ridge
Elastic Net

Minimize MSE subject to some type of penalty

Goal is to set some parameters to zero or shrink all parameters

This controls for overfitting
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Penalized Regressions: LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) augments
the MSE with an L1 penalty term as described below:

L(β) =
1

T

T∑
t

(
yt − β′Xt−1

)2
+ λ

P∑
p=1

|βp| (6)

The optimal β solves the below function

β̂LASSO = arg
β

min
1

T

T∑
t

(
yt − β′Xt−1

)2
+ λ

P∑
p=1

|βp| (7)
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Penalized Regressions: LASSO

There are no analytical solution to equation (7)

We solve it with numerical optimization

λ is a tuning parameter, a pure LASSO sets λ = 1

As λ grows β̂ goes to zero

Works really well for sparse models
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Penalized Regressions: Ridge

The Ridge regression augments the MSE with an L2 penalty term as
described below:

L(β) =
1

T

T∑
t

(
yt − β′Xt−1

)2
+ λ

P∑
p=1

β2p (8)

The optimal β solves the below function

β̂Ridge = arg
β

min
1

T

T∑
t

(
yt − β′Xt−1

)2
+ λ

P∑
p=1

β2p (9)
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Penalized Regressions: Ridge

Analytical solution to equation (9)

λ is a tuning parameter, a pure Ridge sets λ = 1

As λ grows β̂ gets closer to zero but never reaches

It does not perform any model selection, it only penalizes very large
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Ridge and LASSO: Geometric Interpretation
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Penalized Regression: Elastic Net

The Elastic Net combines both LASSO and Ridge penalties. The loss
function is given by the below function.

L(β) =
1

T

T∑
t

(
yt − β′Xt−1)

)2
+ λ(1− α)

P∑
p=1

|βp|+
λα

2

P∑
p=1

β2p (10)

The optimal β solves the below function

β̂ = arg
β

min
1

T

T∑
t

(
yt − β′Xt−1)

)2
+ λ(1− α)

P∑
p=1

|βp|+
λα

2

P∑
p=1

β2p (11)
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Penalized Regressions: Elastic Net

No analytical solution to equation (11)

α is the weight attributed to the L1 and L2 penalties. We set
α = 1/2, but can be tuned using Cross Validation.

λ is still a hyperparameter. We can tune it with CV. We can also just
let λ = 1

It performs selection and shrinkage
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