
ML for Finance:
Intro to Deep Learning - Multilayer Perceptrons1

S. Yanki Kalfa

JHU-SAIS

October 17, 2022

1These slides use Dr. Vural’s Data Science for Finance class (MGTF-495) as basis
S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 1 / 41

Outline

1 Recap of Machine Learning Methods

2 Intro to Deep Learning

3 Activation Functions

4 Multilayer Perceptron
Forward Propagation
Gradient Descent

5 Optimizers

6 Vanishing Gradient

7 Regularization

8 Bath Normalization

9 Early Stopping

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 2 / 41

Recap of Machine Learning Methods

Standard time series methods allow us to use history of a variable to
forecast the future (e.g. ARMA)

ARMAx models introduce exogenous regressors to the table and use
other potential correlated features to forecast

Penalized regressions introduce a penalty term into the objective
function and serve as model selection tools

Tree based methods allow us to introduce non-linearities by dividing
the feature space into high-dimesional rectangles (e.g. Random
Forests).

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 3 / 41

Perceptron

Used for binary (0 or 1) classification

Calculates sum of weighted inputs

Classifies output as 1 if sum is greater than certain threshold θ

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 4 / 41

Perceptron- Diagram

x1

x2

x3

w1

w2

w3

f(x)=ɑ+∑xiwi If f(x)>Θ then 1
If f(x)≤Θ then 0

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 5 / 41

Perceptron- Drawback

The perceptron only uses linear combinations of inputs

How to include non-linearities?

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 6 / 41

Activation Functions

Activation functions introduce non-linearities

Transform the weighted sum of inputs

x1

x2

x3

w1

w2

w3

f(x)=ɑ+∑xiwi
g(x)=h[f(x)] Output

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 7 / 41

Common Activation Functions

Sigmoid:

S(x) =
1

1 + e−x

S ′(x) = S(x)(1− S(x))

Tanh:

T (x) =
ex − e−x

ex + e−x

T ′(x) = 1−
[
ex − e−x

ex + e−x

]2
ReLU:

R(x) = max(0, x)

R ′(x) =

{
0 if x ≤ 0

1 if x > 0

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 8 / 41

Common Activation Functions

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 9 / 41

Multilayer Perceptron-Introduction

Multilayer Perceptron (MLP) is another term for Fully Connected
Feed-Forward Neural Networks

“Fully Connected” because all neurons are conncected to each other

We call them feed forward because the information “feeds forward”
through the network

There are three main components of MLP:
1 Input Layer
2 Hidden Layer(s)
3 Output Layer

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 10 / 41

MLP - Architecture

Hidden
Layer 1

Input
Layer

Hidden
Layer 2

Output
Layer

x1

x2

x3

 Y

h11

h12

h13

h14

h15

h21

h22

h23

h24

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 11 / 41

MLP - Hidden Neuron Layer 1

Hidden Unit: h11
x1

x2

x3

w(1,1)

w(1,2)

w(1,3)

a(j)=ɑ+∑x(i)w(j,i)

Weighted Sum Activation

z(j)=g[a(j)]

w(2,1)

w(2,2)

w(2,3)

w(2,4)

Tanh
ReLU
Sigmoid

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 12 / 41

MLP - Hidden Neuron Layer 2

Hidden Unit: h21
h11 w(2,1)

w(2,3)

w(2,5)

a(j)=ɑ+∑h(i)w(j,i)

Weighted Sum Activation

z(j)=g[a(j)]

Tanh
ReLU
Sigmoid

h12

h13

h14

h15

w(2,2)

w(2,4)

w(3,1)
Output

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 13 / 41

MLP - Output Layer

Output Layer
h21 w(3,1)

w(3,3)

Y=ɑ+∑h(i)w(j,i)h22

h23

h14

w(3,2)

w(3,4)

Regression:
Linear Activation

Classification:
Softmax

a(j)=ɑ+∑h(i)w(j,i)
Y=Softmax(a(j))

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 14 / 41

Gradient Descent

We use gradient descent to find the weights that minimize the loss
function

For regression the commonly used loss function is the squared error
loss (MSE)

For classification we use Cross Entropy

The loss function almost surely is non-convex, hence taking
derivatives does not guarantee finding the minimum

How does Gradient Descent work?

1 Make prediction

2 Calculate loss

3 Update weights

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 15 / 41

Loss Function Diagram

L(y,f(x))

w

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 16 / 41

Optimal Weights

How do we find optimal weights?

The process in which we update weights to minimize the loss function
is called Backpropagation

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 17 / 41

Backpropagation: Diagram

Input
Layer

Output
Layer

x1

x2

x3

 Y

h11

h12

h13

h14

h15

h21

h22

h23

h24

Forward Prop.

Backward Prop.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 18 / 41

Backpropagation

For any weight in the architecture we use the following rule to update
the weights

ω
(t+1)
i ,j = ω

(t)
i ,j − η

∂L

∂ω
(t)
i ,j

Where η is the learning rate. The smaller the learning the longer the
convergence. However, this does not mean that you should pick a
large η because you can jump over the optimum.

η is a hyperparameter- you can tune it or just choose one.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 19 / 41

Technical Details

Some notation first:

zj can be:
1 the output of a hidden unit
2 the input to a hidden unit

We want to calculate:
∂L

∂w
(t)
i ,j

We will use the chain rule to calculate the partial derivative defined above.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 20 / 41

Technical Details

∂L

∂w
(t)
i ,j

=
∂L

∂aj

∂aj
∂wi ,j

aj = α +
∑

hi ,jwi ,j

∂aj
∂wi ,j

= zj

∂L

∂w
(t)
i ,j

=
∂L

∂aj
zi

δj ≡ −
∂L

∂aj

ω
(t+1)
i ,j = ω

(t)
i ,j + δjzi

We now have a general definition for the updating rule.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 21 / 41

Optimizers

Deep learning algorithms are not one shot estimators.

This is evident from the forward and back propagation.

We should not confuse how the gradients are calculated at each layer
with how the Loss function is minimized.

Optimizers minimize the Loss function given the paremeters of the
model.

Neural Networks are trained using optimizers and backpropagation.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 22 / 41

Gradient Descent

3 Variants:

Batch Gradient Descent: Takes in the full training sample

θ = θ − η∇θL(θ)

Stochastic Gradient Descent: Takes in one sample at a time

θ = θ − η∇θL(θ|xt , yt)

Mini-batch Gradient Descent: Takes a sample smaller than the full
sample but larger than one sample

θ = θ − η∇θL(θ|xt:t+n,yt:t+n)

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 23 / 41

Gradient Descent Optimizers- Momentum

1 Momentum: Accelerate SGD. Compute gradient at current location
then jump in the direction of the gradient.

νt = γνt−1 + η∇θL(θ)

θ = θ − νt

2 Nesterov Accelerated Momentum: Accelerate but know where you are
going: Jump in the previously computed gradient, measure the
gradient at the current location then adjust.

νt = γνt−1 + η∇θL(θ − γνt−1)

θ = θ − νt

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 24 / 41

Adaptive Learning Rate Optimizers

1 Adagrad: Adapts learning rate to the parameters. Large update for
infrequent parameters, small updates for frequent parameter.

gt,i = ∇θtL(θi ,t)

θt+1,i = θi ,t − ηgi ,t
θt+1,i = θi ,t −

η√
Gt,ii + ε

gi ,t

Gt,ii diagonal matrix where element are sum of squares of gradient. ε
is a smoothing term to avoind division by 0. No need to tune the
learning rate manually. Because Adagrad accumulates square
graidents in the denominator, the learning rate shrinks to zero fast,
and so we stop learning.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 25 / 41

Adaptive Learning Rate Optimizers

2 AdaDelta: Extension to Adagrad, where it restricts the the window of
accumulated square gradients. The sum of gradients recursively
defined as a decayinh average of all past square gradients.

E[g2
t] = γE[g2

t−1] + (1− γ)g2
t

∆θt = −θi ,t
θt+1 = θt + ∆θt

∆θt = − η√
E[g2

t] + ε
gt

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 26 / 41

Adaptive Learning Rate Optimizers

3 Adam: Adaptive Moment Estimation. Stores exponentially decaying
average past square and level gradients.

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− beta2)g2
t

m̂t =
mt

1− β1,t
v̂t =

vt
1− β2,t

θt+1 = θt −
η√

v̂t + ε
m̂t

mt and vt are the mean and variance of the gradients. They are
initialized at 0.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 27 / 41

Vanishing Gradient Problem

Gradients are crucial to train neural networks

We calculate the gradients with backpropagtion

We use the gradients to minimize the Loss function

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 28 / 41

Vanishing Gradient

We start calculating the gradients from the end of the MLP structure
and go backwards

To calculate gradients at the shallower hidden layers we use the chain
rule

What is the potential pitfall here?

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 29 / 41

Vanishing Gradient- Sigmoid Activation

Let’s take the case of an MLP with 3 hidden layers with a single unit. The
sigmoid activation function takes the following form:

S(x) =
1

1 + e−x

∇ =
dS(x)

dx
= S(x)(1− S(x))

∇max =
1

4

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 30 / 41

Vanishing Gradient- Sigmoid Activation

The best possible outcome is 1/4. We know the updating rule is:

ω = ω − η ∂L
∂ω

If we go the third hidden layer the gradient at best can be 1/4, in the
second layer the gradient can be at best (1/4)2, in the third hidden layer
the gradient can be at best (1/4)3.
At the shallower layers, we have almost no information update. To fix this
problem, we need to pick a different activation function such as the ReLU
function.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 31 / 41

Regularization-Dropout

Neural Nets are very flexible tools that fit the data with almost
perfect fit.

This means that we need to protect ourselves against overfitting.

How do we avoid overfitting?

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 32 / 41

Regularization-Dropout

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 33 / 41

Regularization-Dropout

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 34 / 41

Regularization-Dropout

Benefits:

We drop some neurons
The neurons left learn generic representation
Prevent Overfitting

Adds noise to Gradients:

Generalize with noise (mimic unseen data)

Lower Model Complexity:

Smaller number of neurons

During test all neurons are included

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 35 / 41

Feature Scaling

MinMax Scaling:Scale feature between 0 and 1

xnew =
x − xmin

xmax − xmin

Standard Scaler: Zero mean and Unit variance

xnew =
x − µ
σ

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 36 / 41

Feature Scaling

Why do we care about the scaling

When features have very large and very small scales optimization
takes a long time.

Okay, but why?

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 37 / 41

Feature Scaling

When features are disproportionate then the ellipses are elongated.

This causes the steepest gradient to be almost perpendicular to the
direction of the minimum point.

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 38 / 41

Feature Scaling

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 39 / 41

Batch Normalization

We can conduct feature scaling before the neural net.

Yet, it appears that we can also scale the outputs of each hidden cell.

This method is called batch normalization

it helps speed up optimization

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 40 / 41

Early Stopping

We monitor valdation loss with each run

Early stopping happens when we stop training the model when
validation loss does not get smaller within a given amount of runs.

We call this the patience parameter

S. Yanki Kalfa (JHU-SAIS) Neural Nets October 17, 2022 41 / 41

	Recap of Machine Learning Methods
	Intro to Deep Learning
	Activation Functions
	Multilayer Perceptron
	Forward Propagation
	Gradient Descent

	Optimizers
	Vanishing Gradient
	Regularization
	Bath Normalization
	Early Stopping

